Двигатели внутреннего сгорания работают на жидком топливе бензин керосин нефть или на горючем газе

Обновлено: 18.05.2024

Однако дальнейшее развитие ДВС сегодня связано с решением насущных топливных и экологических проблем.

Топливо для тепловых двигателей

Существование ДВС неразрывно связано с химическими топливами, сжигаемыми для получения зарядов сжатых рабочих газов. При этом в качестве топлив в обычных двигателях используются горючие органические вещества и воздушный окислитель из атмосферы. Первичным энергоносителем, как известно, считают горючие вещества, хранимые на борту транспортного средства. Доминирует среди них жидкое горючее нефтяного происхождения (бензин, дизтопливо, керосин). Ежегодно двигатели автомобилей потребляют около 1 млрд. тонн нефтяных топлив. Но запасы нефти ограничены и невозобновляемы.

В ближайшее время реальной замены ДВС, по мнению авторов, скорее всего, не предвидится. В связи с этим идет активный поиск альтернативных энергоносителей для использования в качестве моторного топлива. Впрочем, вопрос об альтернативе существующим видам топлива стоял уже с момента появления ДВС – и даже раньше.

Распространение дымного пороха в Европе XIII века и изобретение пушек навели изобретателей на мысль о возможности использования пороха для получения механической энергии. Такие попытки делали Гойтфель (1678 г.) и Гюйгенс (1680 г.).

В 1688 г. Папен продолжил опыты с пороховой машиной Гюйгенса. Эти попытки не привели к успеху.

Изобретатель процесса газификации древесного топлива француз Лебон, оформив патент на получение генераторного газа, в 1801 г. дал дополнение к своему патенту, в котором он описывает принцип газового двигателя внутреннего сгорания. К сожалению, идея Лебона не была реализована.

В 1820 г. в Англии Сесиль описал опыты с двигателем, работающим на водороде.
Известно, что первый серийный двигатель внутреннего сгорания Ленуара (1860 г.), первый четырехтактный двигатель Отто (1878 г.), ставший прообразом современных четырехтактных двигателей, и первый двухтактный двигатель Клерка (1880 г.), – все они работали на искусственном газе, как единственном виде моторного топлива, доступном в то время.

Отсутствие нефти в Европе привело к разработке технологии каталитического синтеза жидких углеводородов из угля (реакция Фишера–Тропша). Сейчас синтетическое топливо производится на трех заводах в ЮАР, обеспечивая в стране парк автомобилей жидким топливом.

Освоение технологии сжижения попутного нефтяного газа (пропан-бутана С3Н8, С4Н10) и развитие добычи природного газа (метана СН4) привели к созданию надежных систем питания двигателей, в том числе транспортных, газовым топливом.

В некоторых сельскохозяйственных районах, где освоена технология метанового сбраживания отходов, в качестве моторного топлива используется биогаз – метан (70‑80%) в смеси с углекислым газом (20‑30%).

Для дизельных двигателей топливом может служить растительное масло или продукты его обработки метанолом (этанолом) с получением метанольного (этанольного) эфира. Перспективным в этом направлении является использование рапсового масла ввиду высокой масляничности этой культуры. В настоящее время в ряде стран, в частности в Европе, производство рапсового масла и рапсово‑метанольного эфира достигает нескольких тысяч тонн в год.

Следовательно, химическая энергия топливной смеси вначале преобразуется в термическую, а затем – в потенциальную (сжатого газа). Далее газ, расширяясь, давит на поршень, преобразуя энергию избыточного давления в механическую – которая, в свою очередь, преобразуется из линейного движения поршня во вращательное движение вала двигателя. Диапазон нагрева газов, их термодинамические свойства, степень полезного расширения и сопутствующие потери при преобразовании энергии определяют, в целом, эффективность воздушно-тепловых двигателей: бензиновых ДВС – не более 30‑35%, дизельных ДВС – около 40%.

Принцип порохового цикла

Вернемся к идее порохового двигателя. В принципе, огнестрельные орудия – это пороховые ДВС, преобразующие энергию горячих сжатых рабочих газов из объема заряда в механическую (кинетическую) энергию движения снаряда. Здесь не важно, что процесс выстрела расчленен на отдельные операции, а метаемый снаряд не имеет связи с механизмом преобразования движения.

Процесс преобразования химической энергии порохового заряда происходит по другому принципу, отличному от воздушных циклов ДВС. Порох – разновидность унитарных топлив и взрывчатых веществ, содержащих в составе твердой фазы как окислитель (донор кислорода), так и горючее вещество (реципиент кислорода), способные к экзотермической реакции.

Исторически первым топливом-порохом был так называемый дымный порох – тонкая смесь порошков калиевой селитры КNO3 (68‑75%), серы (10‑15%) и древесного угля (15‑17%) – первое в эпоху Средневековья вещество, обладавшее неизвестными ранее взрывчатыми свойствами. Высокая скорость сгорания пороха (до 400 м/с) объясняется быстрым проникновением горячих поджигающих газов между частицами пороховой смеси. Эпоха дымного пороха длилась свыше 500 лет, до середины XIX века; за это время не было найдено других порохов, удобных для применения.

Таким образом, главная физико-химическая особенность пороховых систем как энергоносителей состоит в том, что все топливные компоненты (и горючие, и окислители, и рабочие газы), подобно чрезвычайно сжатой пружине, хранятся при весьма высокой плотности кристаллов и молекулярных связей конденсированной фазы (K-фазы). При возбуждении реакции от искры или капсюля-воспламенителя происходит необратимое экзотермическое фазовое превращение вещества (газораспад), когда объем полученных газов превышает объем исходного заряда примерно в тысячу раз. При сжигании навески бездымного пороха в камере постоянного объема V = const, содержащей n0 моль газов, продукты сгорания (n1 моль) по уравнению состояния газов развивают давление Р1 – пропорционально отношению присутствующих количеств газов в камере после реакции и до нее (n1/n0 >>1), умноженному на отношение их абсолютных температур (Т1/Т0).

Из рассмотренного следует, что на первом этапе (подготовка рабочего заряда) процессы в воздушно-тепловых ДВС отличаются от подготовки стрелкового выстрела. Так, топливная смесь в обычных ДВС готовится из двух компонентов: заряда воздуха-окислителя (более 90‑94%) и дозы горючего (менее 6‑10%). Поскольку плотность газов мала, весь воздушный окислитель (все газы) перед сжиганием топливной смеси предварительно сильно сжимают.

Современные пороховые системы

Возможность использования пороховых систем как моторных топлив для двигателей ограничена тем же признаком, который препятствовал этому и на заре создания ДВС. А именно – сложностью подачи цикловой порции (дозы) твердого топлива в реакционную камеру цилиндра. Кроме того, сухие пороховые смеси чрезвычайно пожароопасны; продукты сгорания многих энергонасыщенных систем – весьма неэкологичны; стоимость порохов – весьма и весьма велика.

Свойство некоторых азотных соединений, богатых кислородом, отдавать последний (кислород) для окисления горючих веществ, используется для форсирования некоторых ДВС на обычном жидком топливе. Так, еще в 1930‑е годы, решая вопрос кратковременного увеличения мощности бензиновых авиадвигателей самолетов на большой высоте, использовали введение в цилиндры жидкой закиси азота N2О. При вспышке бензино-воздушной смеси закись азота легко распадается в цилиндрах ДВС на азот и свободный кислород:
N2O = N2 + ½ O2.

В ракетной, космической и оборонной технике известны смесевые топлива на основе соединений азота, содержащие и горючие компоненты, и окислители в твердой, жидкой или гелеобразной фазе.

Варианты использования азотных топлив

Азотные энергоносители могут использоваться в поршневых, роторных и газотурбинных двигателях. Однако такие двигатели должны быть адаптированы к особенностям азотных топлив. Впрочем, это не исключительная особенность азотных топлив: бензиновые, дизельные, газовые двигатели также имеют свои особенности, характерные для используемого вида топлива. Остановимся на поршневых двигателях.

При использовании сбалансированных по кислороду сплавов топливных стехиометрий или их растворов может быть применен двухтактный цикл без впуска воздуха (подобный цикл используется, например, в поршневых двигателях морских торпед). Более широкие возможности по диапазону рабочих температур и хранению топлива в жидкой фазе имеют водно‑солевые и водно-аммиачные растворы-эвтоники азотных компонентов. В этом случае топливная масса будет содержать 2‑4 -кратный избыток горючих веществ (без использования специальных компонентов). Здесь должен применяться двухтактный цикл с впуском и сжатием воздуха, но количество воздуха в таком случае требуется меньшее (до 10‑15 раз) по сравнению с подобными циклами на нефтяном топливе, так как часть окислителя содержится в топливной смеси. Следовательно, затраты энергии на предварительное сжатие воздуха для сжигания окислительсодержащих азотных топлив будут меньшими. Учитывая, что для быстрого разложения топливного окислителя-АС необходима температура не менее 300 оС, а объем цикловой дозы и теплоемкость азотных топлив выше, чем нефтепродуктов по дизельному циклу, теплоты сжатого воздуха может быть недостаточно для запуска двигателя. Поэтому в пусковом режиме необходимо применять подогреваемую камеру термолиза. Для этого применимы свечи накаливания. В режиме установившейся работы двигателя камера термолиза разогревается за счет теплоты реакций сгорания. С учетом потенциальной энергонасыщенности азотных топлив возможны технические решения организации запуска двигателя без впуска и сжатия воздуха.

Теплонапряженность двигателя на водо-нитратных топливах будет существенно ниже ввиду меньших температур процесса (в 1,5‑2 раза) – по сравнению с обычными ДВС на нефтяном топливе. В связи с этим целесообразен отказ от системы жидкостного охлаждения ДВС; необходимый уровень температуры стенок цилиндров обеспечит организация воздушного охлаждения. Соответственно, потери теплоты будут меньшими, а индикаторный КПД цикла ожидается на уровне 70‑75%.

Водо-нитратные растворы не допускают контакта топлива с маслом в связи с возможностью эмульгирования и старения масел, с потерей ими смазывающих свойств. Поэтому кинематическая схема двигателя должна предусматривать крейцкопфный узел в механизме преобразования движения и отделение цилиндра от картера двигателя. В качестве такого варианта может применяться кривошипно-кулисный механизм преобразования движения с линейным движением штока поршня, отделением цилиндра от масляного картера и использованием подпоршневого объема в качестве продувочного насоса в двухтактном цикле. Уплотнение поршня в цилиндре может быть сухим с применением компрессионных колец из железо-графита.

В качестве механизма газораспределения применима клапанно-щелевая схема с выпуском отработавших газов через клапаны в головке цилиндра и впуском продувочного воздуха через окна в средней части цилиндра с поворотной гильзой.

Учитывая особенности кривошипно-кулисного механизма, обладающего более высоким механическим КПД по сравнению с традиционным кривошипно-шатунным механизмом, эффективный КПД двигателя на азотных топливах может быть близок к 70%, что примерно в два раза выше, чем для бензиновых или дизельных двигателей.

Все отмеченные конструктивные особенности двигателя технически реализуемы и позволяют выполнить такой двигатель для использования в нем азотных топлив по обычным машиностроительным технологиям.

Следует учитывать, что по объемному расходу азотного топлива двигатель будет уступать показателям расхода горючего нефтяных ДВС до 2– 2,5 раза. Это может отразиться на емкости топливных баков на автомобиле, но не более. Стоимость единицы механической энергии, произведенной с использованием азотных топлив, по сравнению с эксплуатационными расходами на нефтяные моторные топлива будет снижаться примерно в 3 раза (при существующих мировых ценах на бензин около 1500 долл./т или 1,1 долл./л).

Азотное топливо должно рассматриваться как новое направление в получении и использовании альтернативных, возобновляемых и экологически чистых энергоносителей применительно для автомобильного, железнодорожного, речного, морского транспорта, а также для электроэнергетики (в основном, для автономных и локальных энергоустановок), для привода дорожно‑строительных и подъемно-транспортных машин и механизмов, для привода двигателей механизмов в шахтах и горных выработках, для снабжения сжатым газом пневматического инструмента и механизмов. Но, учитывая, что в современных условиях автомобильный транспорт является основным потребителем энергии химических топлив, именно автомобильная промышленность может и должна одной из первых освоить применение этого перспективного топлива.
ДЛЯ СПРАВКИ

Submit to our newsletter to receive exclusive stories delivered to you inbox!


Мари Умняшка

Лучший ответ:


Пармезан Черница

Двигатели внутреннего сгорания работают на жидком топливе (бензин, керосин, нефть) и на горючем газе.




Вы можете из нескольких рисунков создать анимацию (или целый мультфильм!). Для этого нарисуйте несколько последовательных кадров и нажмите кнопку Просмотр анимации.

Другие вопросы:


Зачетный Опарыш

Как вы думаете, какие буквы должны иметь более короткие коды: те, которые в текстах встречаются чаще, или те, которые встречаются реже? Как вы думаете, какие буквы должны иметь более короткие коды: те, которые в текстах встречаются чаще, или те, которые встречаются реже?


Суррикат Мими

Определите, к каким кодам относится код Морзе — к равномерным или неравномерным. Как вы рассуждали? Определите, к каким кодам относится код Морзе — к равномерным или неравномерным. Как вы рассуждали?


Васян Коваль


Онтонио Веселко


Мари Умняшка



Таня


Васян


Екатерина


Нефтяной двигатель, керосиновый двигатель, двигатель с калильной головкой, калоризаторный двигатель, полудизель [1] — двигатель внутреннего сгорания, воспламенение топлива в котором происходит в специальной калильной головке — калоризаторе. Двигатель может работать на различных видах топлива: керосине, лигроине, дизельном топливе, сырой нефти, растительном масле [2] и т. д.

Содержание

Устройство и принцип действия


Устройство двухтактного нефтяного двигателя:
1 — калильная головка;
2 — цилиндр;
3 — поршень;
4 — картер

Нефтяной двигатель может быть как двухтактным, так и четырёхтактным. Основной особенностью данного типа двигателей является калильная головка (калоризатор), закрытая теплоизоляционным кожухом. Перед запуском двигателя калоризатор должен быть нагрет до высокой температуры при помощи паяльной лампы. При работе двигателя через форсунку в калильную головку поступает топливо, где испаряется. Калильная головка сообщается с полостью цилиндра, откуда поступает сжатый воздух, в результате чего топливо воспламеняется. Степень сжатия у подобных двигателей обычно ниже, чем у дизельных — порядка 8.

Достоинства

  • Простота конструкции;
  • Возможность работы на разных видах топлива без перенастройки;
  • Двухтактные нефтяные двигатели могут работать при любом направлении вращения маховика, для реверсирования необходимо плавно снижать обороты до тех пор, пока очередная вспышка топлива не произойдёт раньше, чем поршень подойдёт достаточно близко к верхней мёртвой точке, после чего маховик останавливается и начинает вращение в обратную сторону.

Недостатки

  • Необходимость прогрева калильной головки до температуры 300—350° перед запуском;
  • Низкий КПД за счёт плохой продувки калоризатора свежим воздухом и низкой степени сжатия [3] ;
  • Двигатель данной конструкции развивает максимальную мощность на более низких оборотах, чем традиционные дизельные двигатели, отсюда — сильные вибрации и малая удельная мощность. К тому же двигатель требует очень массивного маховика;
  • Высокая температура калильной головки поддерживается за счёт вспышек топлива в цилиндрах, поэтому данный тип двигателя не может без дополнительного подогрева длительное время работать при малой нагрузке и на холостых оборотах.

Применение

Двигатели данного типа выпускались до конца 1950-х годов и применялись в основном в сельскохозяйственной технике, судостроении и на маломощных электростанциях.

См. также

Примечания

  1. ↑Нефтяной двигатель. Проверено 25 октября 2012.
  2. ↑История тракторов Lanz Bulldog. Проверено 25 октября 2012.
  3. ↑Сибирь. Промышленность. Машиностроение

Ссылки

  • калоризаторный двигатель — статья из Большой советской энциклопедии — Словарь сельскохозяйственных терминов — Технический железнодорожный словарь
  • Яшин, ВладимирИстория тракторов Lanz Bulldog. Проверено 13 октября 2012.
  • Двигатель внутреннего сгорания
  • Дизельные двигатели

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Нефтяной двигатель" в других словарях:

НЕФТЯНОЙ ДВИГАТЕЛЬ — двигатель внутреннего сгорания, работающий на нефти без предварительного приготовления рабочей смеси в карбюраторе. В Н. д. имеется калоризатор, повышающий температуру в цилиндре и воспламеняющий впрыснутое через форсунку топливо. Калоризатор… … Сельскохозяйственный словарь-справочник

НЕФТЯНОЙ ДВИГАТЕЛЬ — (нефтянка, полудизель) двигатель с калоризатором, работающий на нефти по циклу Отто. Обычно двухтактный, сравнительно небольшой мощности. От газовых и карбюраторных двигателей, работающих по циклу Отто, отличается тем, что сжатию подвергается не… … Морской словарь

Нефтяной двигатель Дизеля* — относится к классу двигателей с внутренним сгоранием, работающих на жидком горючем, по преимуществу, на нефти или керосине. Изобретатель этого двигателя, инженер Дизель (из Мюнхена), собственно предполагал создать двигатель, могущий работать не… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Нефтяной двигатель Дизеля — относится к классу двигателей с внутренним сгоранием, работающих на жидком горючем, по преимуществу, на нефти или керосине. Изобретатель этого двигателя, инженер Дизель (из Мюнхена), собственно предполагал создать двигатель, могущий работать не… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

НЕФТЯНОЙ — НЕФТЯНОЙ, нефтяная, нефтяное. 1. прил. к нефть. Нефтяной источник. Нефтяной фонтан. 2. Занимающийся добычей, обработкой нефти. Нефтяная промышленность. Нефтяной промысел. 3. Работающий посредством нефти. Нефтяной двигатель. 4. Добываемый из нефти … Толковый словарь Ушакова

нефтяной — ая, ое. 1. к Нефть. Н. запах. Н. фонтан. Н ое месторождение. Н ая скважина, вышка, лаборатория, промышленность. Н. газ. Н ая смола. Н ые масла. 2. Действующий при помощи нефти. Н. двигатель … Энциклопедический словарь

нефтяной — а/я, о/е. 1) к нефть Нефтяно/й запах. Нефтяно/й фонтан. Н ое месторождение. Н ая скважина, вышка, лаборатория, промышленность. Нефтяно/й газ … Словарь многих выражений

Дизельный двигатель — Дизельный двигатель поршневой двигатель внутреннего сгорания, работающий по принципу самовоспламенения распылённого топлива от воздействия разогретого при сжатии воздуха.[1] Спектр топлива для дизелей весьма широк, сюда включаются все… … Википедия

Газовый двигатель — двигатель внутреннего сгорания, работающий на газообразном топливе: природном и нефтяном (попутном) газах, а также сжиженном газе (пропано бутановая смесь), доменных, генераторных и др. газах. Преимущества Г. д. перед жидкотопливными:… … Большая советская энциклопедия


Пылающий коктейль работает за счет сжигания этанола (зернового спирта), жидкого топлива, которое также содержится во всех алкогольных напитках.

Жидкое топливо - это горючие или генерирующие энергию молекулы, которые можно использовать для создания механической энергии , обычно производящей кинетическую энергию ; они также должны принимать форму своего сосуда. Воспламеняются пары жидкого топлива, а не жидкость. Большинство широко используемых жидких видов топлива получают из ископаемых видов топлива ; однако существует несколько типов, например водородное топливо (для использования в автомобилях ), этанол и биодизель , которые также относятся к категории жидкого топлива. Многие виды жидкого топлива играют первостепенную роль в транспорте и экономике.

СОДЕРЖАНИЕ

Некоторые общие свойства жидкого топлива заключаются в том, что его легко транспортировать и относительно легко обращаться с ним. Физические свойства жидкого топлива меняются в зависимости от температуры, хотя и не так сильно, как у газообразного топлива. Вот некоторые из этих свойств: температура вспышки , самая низкая температура, при которой образуется огнеопасная концентрация пара; точка возгорания , температура, при которой будет происходить устойчивое горение пара; точка помутнения дизельного топлива, температура, при которой растворенные парафиновые соединения начинают слипаться, и точка застывания , температура, ниже которой топливо слишком густое, чтобы его можно было свободно разлить. Эти свойства влияют на безопасность и обращение с топливом.

Большинство жидких видов топлива, используемых в настоящее время, производится из нефти . Самый заметный из них - бензин . Ученые обычно признают, что нефть образовалась из окаменелых останков мертвых растений и животных под воздействием тепла и давления в земной коре.

Бензин - наиболее широко используемое жидкое топливо. Бензин, как его называют в США и Канаде, или бензин практически повсюду, состоит из молекул углеводородов (соединений, содержащих только водород и углерод), образующих алифатические соединения или цепочки атомов углерода с присоединенными атомами водорода. Однако многие ароматические соединения (углеродные цепи, образующие кольца), такие как бензол , естественным образом содержатся в бензине и вызывают риски для здоровья, связанные с длительным воздействием топлива.

Производство бензина достигается путем перегонки из сырой нефти . Желаемую жидкость отделяют от сырой нефти на нефтеперерабатывающих заводах . Сырая нефть добывается из земли в нескольких процессах, наиболее часто встречающимися могут быть балочные насосы . Для того, чтобы создать бензин, нефть сначала должна быть удалена из сырой нефти.

Обычное дизельное топливо похоже на бензин в том, что оно представляет собой смесь алифатических углеводородов, извлеченных из нефти. Дизельное топливо может стоить больше или меньше, чем бензин, но, как правило, его производство дешевле, поскольку используемые процессы экстракции проще. В некоторых странах (особенно в Канаде, Индии и Италии) также действуют более низкие налоговые ставки на дизельное топливо.

После перегонки дизельная фракция обычно обрабатывается для уменьшения количества серы в топливе. Сера вызывает коррозию транспортных средств, кислотные дожди и более высокие выбросы сажи из выхлопной трубы. Исторически сложилось так, что в Европе по закону требовалось более низкое содержание серы, чем в Соединенных Штатах. Однако недавнее законодательство США снизило максимальное содержание серы в дизельном топливе с 3000 ppm до 500 ppm в 2007 году и 15 ppm к 2010 году. Подобные изменения также происходят в Канаде, Австралии, Новой Зеландии и некоторых азиатских странах. См. Также дизельное топливо со сверхнизким содержанием серы .

Дизельный двигатель представляет собой тип двигателя внутреннего сгорания , который поджигает топливо путем введения его в камеру сгорания предварительно сжатого воздуха (с которого в свою очередь , повышает температуру) в отличие от использования внешнего источника зажигания, например, свечи зажигания.

Керосин используется в керосиновых лампах и в качестве топлива для приготовления пищи, отопления и небольших двигателей. Он заменил китовый жир для освещения. Топливо для реактивных двигателей производится нескольких марок ( Автур , Джет А , Джет А-1 , Джет Б , JP-4 , JP-5 , JP-7 или JP-8 ), которые представляют собой смеси керосинового типа. Одна из форм топлива, известная как RP-1, сжигается с жидким кислородом в качестве ракетного топлива. Эти керосины топливного качества соответствуют требованиям по точкам дыма и замерзания.

Керосин иногда используется в качестве добавки к дизельному топливу для предотвращения гелеобразования или образования парафина при низких температурах. Однако это не рекомендуется для некоторых современных дизельных двигателей транспортных средств, так как это может повлиять на работу оборудования, регулирующего выбросы двигателя.

Сжиженный нефтяной газ представляет собой смесь пропана и бутана , оба из которых являются легко сжимаемыми газами при стандартных атмосферных условиях. Он обладает многими преимуществами сжатого природного газа (КПГ), но горит не так чисто, он плотнее воздуха и намного легче сжимается. Сжиженный нефтяной газ и сжатый пропан, которые обычно используются для приготовления пищи и отопления помещений, все чаще используются в моторизованных транспортных средствах; пропан является третьим по популярности моторным топливом в мире.

Когда нефть недоступна, можно использовать химические процессы, такие как процесс Фишера-Тропша, для производства жидкого топлива из угля или природного газа . Синтетическое топливо из угля было стратегически важным во время Второй мировой войны для немецких военных. Сегодня синтетическое топливо, производимое из природного газа, производится, чтобы использовать более высокую ценность жидкого топлива при транспортировке.

Природный газ , состоящий в основном из метана , можно сжимать до жидкости и использовать в качестве заменителя других традиционных жидких видов топлива. Его сгорание очень чистое по сравнению с другим углеводородным топливом, но низкая точка кипения топлива требует, чтобы топливо поддерживалось при высоком давлении, чтобы поддерживать его в жидком состоянии. Хотя он имеет гораздо более низкую температуру воспламенения, чем такое топливо, как бензин, он во многих отношениях безопаснее из-за более высокой температуры самовоспламенения и низкой плотности, что приводит к его рассеиванию при выбросе в воздух.

Биодизель похож на дизельное топливо, но имеет различия, аналогичные различиям между бензином и этанолом. Например, биодизель имеет более высокое цетановое числорейтинг (45-60 по сравнению с 45-50 для дизельного топлива, полученного из сырой нефти), и он действует как чистящее средство, избавляясь от грязи и отложений. Утверждалось, что это становится экономически целесообразным только при ценах на нефть в 80 долларов (40 фунтов или 60 евро на конец февраля 2007 года) за баррель. Однако это зависит от местности, экономической ситуации, позиции правительства в отношении биодизеля и множества других факторов, и в некоторых странах было доказано, что это жизнеспособно при гораздо более низких затратах. Кроме того, он дает примерно на 10% меньше энергии, чем обычное дизельное топливо. По аналогии с использованием более высоких степеней сжатия, используемых для двигателей, сжигающих спирты с более высоким октановым числом и бензин в двигателях с искровым зажиганием, использование высокого цетанового числа биодизеля потенциально может преодолеть дефицит энергии по сравнению с обычным дизельным двигателем номер 2.

Метанол - самый легкий и простой спирт , производимый из метана, составляющего природный газ . Его применение ограничено в первую очередь из-за его токсичности (аналогично бензину), но также из-за его высокой коррозионной активности и смешиваемости с водой. Небольшие количества используются в некоторых типах бензина для повышения октанового числа . Топливо на основе метанола используется в некоторых гоночных автомобилях и моделях самолетов.

Метанол также называют метиловым спиртом или древесным спиртом , потому что раньше он производился путем перегонки древесины. Он также известен под названием метилгидрат .

Этанол , также известный как зерновой спирт или этиловый спирт, обычно содержится в алкогольных напитках . Однако его также можно использовать в качестве топлива, чаще всего в сочетании с бензином. По большей части он используется в соотношении бензина к этанолу 9: 1, чтобы уменьшить негативное воздействие бензина на окружающую среду. [ необходима цитата ]

Растет интерес к использованию смеси 85% топливного этанола и 15% бензина. Эта топливная смесь под названием E85 имеет более высокое октановое число, чем большинство бензинов премиум-класса. При использовании в современном автомобиле с гибким топливом он обеспечивает более высокие характеристики заменяемого бензина за счет более высокого расхода топлива из-за меньшего удельного энергосодержания этанола. [2]

Этанол для использования в бензиновых и промышленных целях можно рассматривать как ископаемое топливо , поскольку он часто синтезирует из нефтепродуктов этилена , который дешевле , чем производство от брожения из зерна или сахарного тростника .

Бутанол - это спирт, который можно использовать в качестве топлива в большинстве бензиновых двигателей внутреннего сгорания без модификации двигателя. Это , как правило , является продуктом ферментации биомассы с помощью бактерии Clostridium acetobutylicum (также известный как организм Вейцмановского). Этот процесс был впервые описан Хаимом Вейцманном в 1916 году для производства ацетона из крахмала для производства кордита , бездымного пороха.

Преимуществами бутанола являются его высокое октановое число (более 100) и высокое энергосодержание, лишь примерно на 10% ниже, чем у бензина, и, следовательно, примерно на 50% более энергоемкое, чем у этанола, и на 100% больше, чем у метанола. Единственными серьезными недостатками бутанола являются его высокая температура воспламенения (35 ° C или 95 ° F), токсичность (обратите внимание, что уровни токсичности существуют, но точно не подтверждены) и тот факт, что процесс ферментации возобновляемого бутанола издает неприятный запах. Организм Вейцмана может переносить только уровни бутанола до 2% или около того, по сравнению с 14% для этанола и дрожжей. Производство бутанола из нефти не дает такого запаха, но ограниченные поставки и воздействие на окружающую среду от использования масла сводят на нет цель использования альтернативных видов топлива. Стоимость бутанола составляет около 1,25–1,32 доллара за килограмм (0,57–0,58 доллара за фунт или примерно 4 доллара за галлон США).Бутанол намного дороже этанола (примерно 40 центов за литр или 1,50 доллара за галлон) и метанола.

20 июня 2006 года DuPont и BP объявили о преобразовании существующего завода по производству этанола для производства 9 миллионов галлонов (34 000 кубических метров) бутанола в год из сахарной свеклы. DuPont поставила цель быть конкурентоспособной с нефтью на уровне 30-40 долларов за баррель (0,19-0,25 доллара за литр) без субсидий, поэтому разрыв в ценах на этанол сокращается.

Сжиженный водород - это жидкое состояние элемента водорода . Это обычное жидкое ракетное топливо для ракетных приложений и может использоваться в качестве топлива в двигателе внутреннего сгорания или топливном элементе . Различные концепции водородных транспортных средств имели более низкую объемную энергию, объемы водорода, необходимые для сгорания, велики. Впервые водород был сжижен Джеймсом Дьюаром в 1898 году.

Аммиак (NH 3 ) раньше использовался в качестве топлива, когда бензин был недоступен (например, для автобусов в Бельгии во время Второй мировой войны). Его объемная плотность энергии составляет 17 мегаджоулей на литр (по сравнению с 10 для водорода, 18 для метанола, 21 для диметилового эфира и 34 для бензина). Он должен быть сжат или охлажден, чтобы стать жидким топливом, хотя он не требует криогенного охлаждения, как водород для сжижения. [3]

Читайте также: