Эбу 7е8 код ошибки

Обновлено: 05.07.2024

Таблица 7.1. Соответствие цоколевки колодок диагностического разъема

Тип колодки

Вид разъема, нумерация контактов

1 1 1 4 S 4 ’ «

рпччгЦ TTTTTTTTtfl

9 10 11 ІЗ 13 14 IS 14

4 (общий кузова) /5 (общий сигнальный)

+ 12В (напряжение аккумулятора)

Низкий уровень сигнала датчика расхода воздуха

Высокий уровень сигнала датчика расхода воздуха

Низкий уровень сигнала датчика абсолютного давления

Высокий уровень сигнала датчика абсолютного давления

Низкий уровень сигнала датчика температуры воздуха

Высокий уровень сигнала датчика температуры воздуха

Низкий уровень сигнала датчика температуры охлаждающей жидкости

Высокий уровень сигнала датчика температуры охлаждающей жидкости

Низкий уровень сигнала датчика положения дросселя

Высокий уровень сигнала датчика положения дросселя

Низкий уровень напряжения бортовой сети

Высокий уровень напряжения бортовой сети

Неисправность датчика угловой синхронизации

Неисправность датчика угловой синхронизации

Неисправность датчика угловой синхронизации

Низкий уровень сигнала первого корректора СО

Высокий уровень сигнала первого корректора СО

Низкий уровень сигнала второго корректора СО

Высокий уровень сигнала второго корректора СО

Низкий уровень сигнала первого датчика кислорода (лямбда-зонда)

Высокий уровень сигнала первого датчика кислорода (лямбда-зонда)

Низкий уровень сигнала второго датчика кислорода (лямбда-зонда)

Высокий уровень сигнала второго датчика кислорода (лямбда-зонда)

Неисправность цепи первого датчика детонации

Неисправность цепи второго датчика детонации

Низкий уровень сигнала обратной связи клапана рециркуляции

Высокий уровень сигнала обратной связи клапана рециркуляции

Низкий уровень сигнала обратной связи клапана адсорбера

Высокий уровень сигнала обратной связи клапана адсорбера

Низкий уровень сигнала усилителя рулевого управления

Высокий уровень сигнала усилителя рулевого управления

Неисправность блока управления 1

Неисправность блока управления 2

Неисправность датчика угловой синхронизации

Неисправность датчика положения распредвала

Неисправность датчика скорости автомобиля

Сброс блока управления

Неисправность ОЗУ блока управления

Неисправность ПЗУ блока управления

Неисправность чтения энергонезависимой памяти электронного блока управления

Неисправность записи энергонезависимой памяти электронного блока управления

Неисправность при чтении кода идентификации блока управления

Низкая частота вращения коленчатого вала на холостом ходу

Высокая частота вращения коленчатого вала на холостом ходу

Богатая смесь при регулировке по первому датчику кислорода (лямбда-зонду)

Бедная смесь при регулировке по первому датчику кислорода (лямбда-зонду)

Богатая смесь при регулировке по второму датчику кислорода (лямбда-зонду)

Бедная смесь при регулировке по второму датчику кислорода (лямбда-зонду)

Неисправность при управлении EGR по SEGR

Максимальное смещение УОЗ регулировки по детонации в 1. 4 цилиндре

Неисправность в цепи зажигания 1 . 4 (короткое замыкание)

Неисправность формирователя высокого напряжения

Неисправность форсунки 1 (короткое замыкание)

Неисправность форсунки 1 (обрыв)

Неисправность форсунки 2 (короткое замыкание)

Неисправность форсунки 2 (обрыв)

Неисправность форсунки 3 короткое замыкание)

Неисправность форсунки 3 (обрыв)

Неисправность форсунки 4 (короткое замыкание)

Неисправность форсунки 4 (обрыв)

Неисправность пусковой форсунки (короткое замыкание)

Неисправность пусковой форсунки (обрыв)

Неисправность обмотки 1 регулятора дополнительного воздуха/холостого хода (короткое замыкание)

Неисправность обмотки 1 регулятора дополнительного воздуха/холостого хода (обрыв)

Неисправность обмотки 2 регулятора дополнительного воздуха/холостого хода (короткое замыкание)

Неисправность обмотки 2 регулятора дополнительного воздуха/холостого хода (обрыв)

Неисправность обмотки 2 регулятора дополнительного воздуха/холостого хода (короткое замыкание на землю)

Неисправность цепи реле бензонасоса (короткое замыкание)

Неисправность цепи реле бензонасоса (обрыв)

Неисправность цепи клапана рециркуляции (короткое замыкание)

Неисправность цепи клапана рециркуляции (обрыв)

Неисправность цепи клапана адсорбера (короткое замыкание)

Неисправность цепи клапана адсорбера (обрыв)

Неисправность цепи главного реле (короткое замыкание)

Неисправность цепи главного реле (обрыв)

Неисправность цепи лампы диагностики (короткое замыкание)

Неисправность цепи лампы диагностики (обрыв)

Неисправность цепи тахометра (короткое замыкание)

Неисправность цепи тахометра (обрыв)

Неисправность цепи расходомера топлива (короткое замыкание)

Неисправность цепи расходомера топлива (обрыв)

Неисправность цепи реле кондиционера (короткое замыкание)

Неисправность цепи реле кондиционера (обрыв)

Неисправность цепи реле вентилятора (короткое замыкание)

Неисправность цепи реле вентилятора (обрыв)

Неисправность цепи клапана экономайзера принудительного холостого хода (короткое замыкание)

Неисправность цепи клапана экономайзера принудительного холостого хода (обрыв)

Неисправность в цепи зажигания 1 . 4 (обрыв)

Неисправность цепи прожига датчика массового расхода воздуха (короткое замыкание)

Неисправность цепи прожига датчика массового расхода воздуха (обрыв)


йиЗ со стороны каОеля

Также отметим, что ДМРВ очень чувствителен к внешним воздействиям (пыль, влага, масло), а также подсосу неучтенного воздуха во впуск-ном/выпускном трактах. Выявить подсос неучтенного воздуха можно с помощью цветного дыма, подаваемого на вход воздушного филь

Наименование

Катушка зажигания 1,4

Общий зажигания (GNI)

Регулятор дополнительного воздуха (холостого хода)/цепь 1

Клапан продувки адсорбера

Датчик расхода воздуха (-)

Датчик расхода воздуха (+)

Датчик дросселя (питание)

Общий силовой (GNP)

Формирователь ФВН1 (МЗ-1,4)

Общий силовой (GNP)

Катушка зажигания 2,3

Общий зажигания (GNI)

Регулятор дополнительного воздуха (холостого хода)/цепь 2

Наименование

Формирователь ФВН2 (МЗ-2,3)

Общий датчиков (GNA)

Датчик расхода воздуха (прожиг)

Реле вторичного воздуха

Потенциометр регулировки СО

+ 12 В от реле главного

Датчик детонации 2 (+)

Датчик температуры воздуха (+)

Датчик температуры жидкости (+)

Датчик давления (питание)

Датчик положения клапана рециркуляции (+)

К-линия диагностики блока

тра, или с помощью газоанализатора по показанию СН на работающем двигателе. При поиске места неучтенного подсоса воздуха следует обратить внимание на резиновые шланги между ДМРВ, дроссельным устройством и регулятором дополнительного воздуха, соединение дроссельного устройства с ресивером, подсоединение вакуумного усилителя тормозов к ресиверу, подсоединение регулятора давления топлива к ресиверу, подсоединение клапана адсорбера к ресиверу, место установки датчика температуры воздуха на ресивере, место подсоединения шланга вентиляции картера к дроссельному устройству и плоскость сопряжения ресивера с головкой блока цилиндров. Подсос воздуха во впускную систему из вакуумного усилителя тормозов можно определить по снижению оборотов холостого хода при нажатии на педаль тормоза.

Вывод о попадании масла в камеры сгорания можно сделать по характерному сизому цвету выхлопа. Однако если износ двигателя не является критическим, то на прогретом двигателе цвет выхлопа может быть вполне нормальным, тогда как сизый дым будет наблюдаться лишь в момент запуска двигателя после длительной стоянки. Подобные симптомы наиболее характерны при износе маслосъемных колпачков на клапанах.

Также причина недостаточности давления в топливной магистрали может заключаться в забитости основного топливного фильтра и недостаточной производительности электрического бензонасоса, в том числе из-за забитого фильтра в топливном баке. При повышенном давлении в топливной рампе следует убедиться в отсутствии засоров в сливной магистрали. Расчетная величина давления в топливной рампе при заблокированной сливной магистрали на исправном электробензонасосе составляет

На неработающем двигателе и включенном бензонасосе давление в топливной магистрали должно достичь номинального значения, после чего оно должно снизиться не более чем на 50 кПа. Если давление снижается на большую величину, то причина может заключаться в негерметичности обратного клапана электробензонасоса, неисправности регулятора давления или нарушении целостности элементов топливной магистрали. Косвенным признаком подобного дефекта является затрудненный пуск холодного двигателя.

Также можно отметить, что переобогащение смеси может возникать из-за течи форсунок, а переобеднение — из-за их закоксованности. Оценить исправность форсунок без демонтажа топливной рампы можно специальными приборами. В то же время наиболее полную информацию о состоянии форсунок можно получить в ходе их проверки на стенде с визуальной оценкой формируемого форсункой факела.

Другой причиной повышенного расхода топлива и/или ухудшения тяговых/динамических параметров двигателя может быть накопление ложных параметров адаптации. Причиной накопления ложных параметров адаптации могут являться некритичные неисправности датчиков и исполнительных механизмов, которые ухудшают эксплуатационные характеристики соответствующих узлов, но при этом датчик/исполнительный механизм не определяется ЭБУ как неисправный. Еще одним вариантом появления некорректных данных адаптации является нестабильность питания ЭБУ, включая кратковременное пропадание питания из-за плохого контакта в жгутах и разъемах проводки автомобиля.

В соответствии со стандартом OBD-II коды ошибок алфавитно — цифровые, содержат пять символов, например, Р0331. Первый символ — бук­ва, которая указывает на систему, в которой произошла неисправность. Вто­рой символ — цифра указывает, как определен код: с помощью SAE или про­изводителем автомобиля. Остальные три цифры указывают характер неис­правности.

Стандартом OBD-II используются четыре буквы для обозначения ос­новных электронных систем автомобиля :

В — для корпусной электроники (body);

С — для электроники на шасси (chassis);

Р — для электронных систем управления силовым агрегатом (powertrain);

U — тип системы не определен (undefined).

Не все возможные комбинации кодов использованы, многие зарезерви­рованы на будущее за SAE.

Второй символ (цифра) принимает значения 0, 1,2, 3. Цифра 0 означает, что код ошибки введен с помощью SAE; цифра 1 указывает на то, что код введен производителем; цифры 2 и 3 зарезервированы для последующего ис­пользования за SAE. Третий символ (цифры от 0 до 9) указывает на подсис­тему, где произошла неисправность. Например, для систем управления сило­вым агрегатом (Р):

1,2 — системы подачи топлива и воды;

3 — система зажигания;

4 — система контроля за токсичными выбросами;

5 — система контроля оборотов двигателя;

9, 0 — зарезервировано за SAE.

Последние две цифры в коде ошибки указывают на конкретную причи­ну неисправности. Коды неисправностей различных датчиков, исполнитель­ных механизмов, электронных и электрических цепей организованы в блоки по значениям левой цифры из двух. Правая цифра в блоке соответствует бо­лее специфической информации. Например, низкое или высокое напряжение, сигнал вне допустимого диапазона значений и т. д.

Код Р0113 расшифровывается с учетом сказанного следующим обра­зом: Р — неисправность систем управления силовым агрегатом, 0 — код уста­новлен SAE, 1 — система подачи топлива и воды, 13 — высокий уровень сиг­нала датчика температуры воздуха во впускном коллекторе.

В зависимости от степени значимости для экологической безопасности коды ошибок различных неисправностей могут быть разделены на четыре типа :

Коды типа А. Коды ошибок типа А отражают наличие неисправности, при­водящей к увеличению количества токсичных веществ, выбрасываемых ав­томобилем в окружающую среду. Помимо этого такие неисправности могут вывести из строя каталитический нейтрализатор. Поэтому подпрограмма DE записывает коды ошибок типа А в память ЭБУ и включает лампу MIL при обнаружении неисправности в первой же поездке. Примеры: пропуски в сис­теме зажигания, переобогащенная или переобеднненая ТВ-смесь.

Рубрика: ЭЛЕКТРОННЫЕ И МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ АВТОМОБИЛЕЙ

OBD-II коды ошибок

Каждый из OBD-II кодов неисправностей, состоит из пяти символов. Буквы и четырёх цифр.

Нумерация ошибок OBD-II

  • P00xx — Контроль системы смесеобразования и системы доп. снижения токсичности выхлопа.
  • P01xx — Контроль системы смесеобразования.
  • P02xx — Контроль системы смесеобразования.
  • P03xx — Система зажигания и система контроля пропусков воспламенения.
  • P04xx — Вспомогательные системы контроля эмиссии.
  • P05xx — Контроль скорости автомобиля, системы холостого хода и других систем.
  • P06xx — Блоки управления ECM / PCM / TCM и другие системы
  • P07xx — Трансмиссия.
  • P08xx — Трансмиссия.
  • P09xx — Трансмиссия.
  • P10xx — Коды устанавливаемые производителем. Зависят от марки авто.
  • P20xx — Коды устанавливаемые производителем. Зависят от марки авто.
  • B00xx — Кузов (подушки безопасности, центральный замок, электростекло-подъемники).
  • C00xx — Шасси (ABS противопробуксовочная система, ESP, TCS-Traction Control System Система курсовой устойчивости).
  • U10xx — Межблочная шина обмена данных (CAN-bus) (CAN-II).
  • U25xx — Межблочная шина обмена данных (CAN-bus) (CAN-II).

Символы xx ссылаются на отдельные неисправности внутри каждой подсистемы.

Ошибка 0422


Эффективность нейтрализатора Приора 16 упала ниже нормального уровня – вот о чем сообщает ошибка р0422 владельцу Лада Приора 16 клапанов. Как показывает практика, коды 0422 выскакивают довольно редко. Если на экране бортового компьютера появился код 0422, то вам необходимо выполнить следующие действия:

Правильнее было бы называть это уведомлениями. Но все привыкли к первому названию. Дело в том, что успешные ответы веб-сервера мы не видим, а видим лишь результат запроса – например, открывшуюся страницу, в то время как на неудавшиеся запросы нам отвечают кодами ошибок сервера с кратким разъяснением.

Но это не набор случайных цифр. На то это и код, чтобы быть систематизированным, единообразным, поддающимся расшифровке.

Мы видим на странице (или не видим при успешной обработке запроса) трехзначные числа. Что они значат?

Первая цифра – класс состояния (ошибки);

Две последующие цифры – непосредственно код ошибки сервера.

p1558

Обычно эта ошибка возникает на автомобилях с двигателем 127. Связана она с дроссельной заслонкой, качество которой в этой силовой установке оставляет желать лучшего. Нормально работе двигателя p1558 не мешает, но все равно можно попробовать ее устранить. Кто-то решает проблему перепрошивкой, но мы предлагаем более простой метод.

Снимите дроссельную заслонку, а затем демонтируйте крышку – сделать это можно при помощи шестигранника. Находим внутри пластиковую шестеренку – это рабочая часть. Тщательно смажьте шестеренку и проведите сборку в обратном порядке. Скорее всего, ошибка p1558 исчезнет после этих манипуляций.

История появлении кодов ошибок OBD-II

А вскоре появились и электронные блоки управления, первое поколение которых отвечало за централизованную интерпретацию всех данных, поступающих от датчиков и отображение их показаний на панели приборов. Постепенно ЭБУ начали оснащаться функцией обратной связи, что позволило, кроме чисто считывающих задач, выполнять и контролирующие, частично взяв управление некоторыми функциями работы автомобиля на себя. Блок управления стал настолько умным, что уже умел распознавать сбои в работе датчиков и других блоков автомобиля (прежде всего – отвечающих за работоспособность силового агрегата) и записывать их во флеш-память, чтобы эти ошибки позже можно было интерпретировать. Для этого использовались специальные устройства, которые подключаются к ЭБУ и одновременно к компьютеру (ноутбуку, планшету, а сегодня – и к смартфону). Проблема была в том, что каждый автопроизводитель разрабатывал блоки управления, которые использовали собственную систему кодировки. Более того, зачастую даже в пределах одной марки разные версии ЭБУ не понимали друг друга. Это создавало огромные сложности при диагностировании неисправностей автомобилей для сервисных центров.

Решение пришло с неожиданной стороны. Начиная с середины 80-х годов, прогрессивная мировая общественность начала бить в колокола, утверждая, что агрессивная технологическая деятельность человеческой цивилизации, прежде всего стран с развитой экономикой, привела к потеплению климата. И виноватыми в этом оказались выбросы парниковых газов, источником которых были и автомобили. Внимая гласу учёных, правительство США предприняло некоторые практические шаги, направленные на улучшение экологической ситуации. Одной из таких мер стало принятие стандартов, касающихся оснащения автомобилей с целью уменьшения вреда, наносимого системой выхлопа. В частности, в 1996 году внедрение автомобилестроителями в состав автомобилей блоков ЭБУ стало обязательным, при этом эти устройства должны были, прежде всего, контролировать те параметры работы силового агрегата, которые имели прямое или опосредованное отношение к качеству выхлопа.

Стандарт также упорядочивал структуру обмена информацией между датчиками и исполнительными устройствами с одной стороны, и ЭБУ с другой. Так появилась система OBD-II, регламентирующая порядок записи и считывания информации о работе двигателя. И хотя вначале стандарт имел достаточно узкую направленность и не позволял диагностировать большой спектр других узлов и систем автомобиля, он стал необычайно популярным и начал приобретать сторонников и за пределами США. Этому способствовал и тот факт, что действие стандарта распространялось на все автомобили, производимые на территории Соединённых Штатов, включая иностранные бренды, производимые на местных мощностях для местного же рынка.


В том же 1996 году стандарт был взят на вооружение некоторыми европейскими и азиатскими автопроизводителями, но массовый переход на использование стандартизированного протокола ОБД-2 в отношении кодов ошибок произошла в 2001 году. Правда, касалось это только ТС, оснащённых бензиновым мотором. Для авто с дизельным двигателем переход на использование протокола произошёл на три года позже, в 2004 году. В частности, на территории России стандарт OBD-II внедрён на следующих предприятиях:

  • АвтоВАЗ (с использованием ЭБУ производства Bosch MP);
  • ГАЗ (автомобили Газель, Волга, оснащённые силовым агрегатом Chrysler 2.4L);
  • Всеволожский завод (автомобили Ford Focus);
  • Таганрог (автомобили Hyundai Accent);
  • Калининград (собирает автомобили Kia, BMW);
  • Ижевск (Kia);
  • Тольятти (Chevrolet).

Несмотря на появление стандартизированного протокола, в настоящее время существует несколько его реализаций, привязанных к тем или иным экологическим стандартам:

  • протокол CAN на основе ISO15765-4, в соответствии с которым выпускаются автомобили последних поколений (Форд, Ягуар, Мерседес, Мазда, Ниссан, Лексус, Тойота, Пежо, Крайслер, Рено, Фольксваген, Порше, Опель, Ауди, Сааб, Вольво и др. марок);
  • протокол ISO14230-4 (называемый также K-линией) действует в отношении корейских авто (Дэу, КИА, Хёндай), Субару STi и небольшого количества моделей бренда Mercedes;
  • протокол ISO9141-2 распространён в Японии (автомобили Хонда, Акура, Лексус, Инфинити, Тойота, Ниссан) и Европе (БМВ, Ауди, МИНИ, Мерседес, Порше), используется он и на ранних американских авто (Додж, Крайслер, Плимут, Игл);
  • протокол J1850 VPW распространён в США на автомобилях марок Кадиллак, Бьюик, Крайслер, Шевроле, Хаммер, Додж, Олдсмобиль, Исудзу, Понтиак;
  • версия PWM протокола J1850 нашла применение на автомобилях Линкольн, Форд, Ягуар, Мазда.


Расшифровка классов кодов ошибок

На самом деле кодов ошибок сервера много и, в принципе, все их знать необязательно. Достаточно иметь общее представление и запомнить несколько. В основном ответы сервера адресованы клиенту. Клиент в данном случае – это ваш браузер.

Вот что означают эти классы:

1ХХ – информационные (Informational);

2ХХ – успешные (Success);

3ХХ – перенаправление (Redirection);

4ХХ – ошибка клиента (что-то не в порядке у вас)( Client Error);

5ХХ – ошибка сервера (что-то не в порядке у них) (Server Error)

Так что, если быть въедливым и точным, действительно ошибками можно называть только 400-тые и 500-тые ошибки.

Режимы диагностики

Использование протокола OBD-II позволяет выполнять, кроме собственно диагностики неисправностей, целый ряд других функций, которые можно сгруппировать в соответствии со следующими режимами:

  • считывание характеристик работы узлов и агрегатов автомобиля в режиме реального времени;
  • сохранение в памяти текущих характеристик работы системы на этапе обнаружения неисправностей;
  • режим извлечения кодов ошибок OBD-2 с целью их последующего просмотра и анализа;
  • полная очистка флеш-памяти, включая параметры работы системы, результаты тестирования датчиков, коды неисправностей;
  • режим считывания данных тестирования кислородного датчика;
  • считывание результатов тестовой мониторинговой диагностики – однократный (на протяжении одной поездки) замер датчиков, контролирующих функционирование таких систем автомобиля, как вентилирование топливного бака, EGP, катализатора;
  • считывание и запись в память данных с датчиков, осуществляемые постоянно в реальном режиме времени (состав воздушно-топливной смеси, наличие пропусков зажигания ТВС, другие датчики, влияющие на состав выхлопа);
  • режим управления работой исполнительных механизмов;
  • запрос калибровочной информации и VIN-кода.

Стоит немного подробнее описать первый режим, который поддерживает запись порядка 20 различных параметров. Однако в некоторых реализациях режима, поддерживаемых отдельными производителями, список контролируемых параметров намного больше, доходя до порядка сотни позиций. В числе основных параметров, отслеживаемых диагностической системой ОБД-2, можно отметить следующие:

  • работа системы подачи топлива (может функционировать в двух различных режимах: прямой связи, когда происходит только считывание данных с датчика кислорода, и обратной связи, когда на основе этой информации происходит корректировка подачи топлива для достижения оптимальных показателей);
  • нагрузка на силовой агрегат;
  • уровень давления топлива;
  • температура ОЖ;
  • величина оборотов коленвала;
  • краткосрочная/длительная корректировка подачи топлива;
  • уровень давления топливной смеси во впускном коллекторе;
  • угол опережения системы зажигания;
  • текущая скорость движения ТС;
  • температура поступающего в систему впрыска воздуха;
  • подача дополнительной порции воздуха;
  • положение дроссельной заслонки;
  • уровень расхода воздуха;
  • фиксация данных, поступающих с датчика кислорода.

Интерпретация данных, контролируемых ЭБУ при работающем двигателе, в большинстве случаев требует одновременного отслеживания небольшого количества характеристик (двух – трёх), но в некоторых случаях может потребоваться просмотр и большего числа параметров. Но эта возможность обеспечивается не всегда, поскольку она зависит, во-первых, от конкретной модели сканера, а во-вторых, от скорости обмена данными между сканером и ЭБУ, которая частично зависит и от используемого протокола. Влияет на это и то, в каком формате передаются данные – текстовом, цифровом или графическом. На сегодня самым распространённым протоколом является ISO-9141, однако, он же считается и одним из самых медленных, не позволяющих обеспечить просмотр более 4 параметров с приемлемой для правильной интерпретации результатов частотой.


Коды неисправностей в системе самодиагностики автомобилей Volkswagen





Очистка памяти ЭБУ- В после устранения обнаруженных неисправностей

Литература

1. Б.Астратов. Самодиагностика электронного блока управления впрыском. Ремонт & Сервис, 2001, № 9, с. 44-46.

Список ошибок и обозначение

  • 0102 – количество воздуха, импульс min;
  • 0103 – количество воздуха, импульс max;
  • 0112 – t, импульс min;
  • 0113 – t, импульс max;
  • 0116 – t ОЖ, недопустимый импульс;
  • 0117 – t ОЖ, импульс min;
  • 0118 – t ОЖ, импульс max;
  • 0122 – дроссель, импульс min;
  • 0123 – дроссель, импульс max;
  • 0130 – кислородный элемент до нейтрализ., не работает;
  • 0131 – кислородный элемент до нейтрализ., импульс min;
  • 0132 – кислородный элемент до нейтрализ., импульс max;
  • 0133 – кислородный элемент до нейтрализ., замедленна реакция на изменение горючей смеси;
  • 0134 – система: кислородный элемент – нейтрализатор – не работает;
  • 0136 – кислородный элемент после нейтрализ. не работает до нейтрализ.;
  • 0137 – кислородный элемент после нейтрализ., импульс min;
  • 0138 – кислородный элемент после нейтрализ., импульс max;
  • 0140 – система: кислородный элемент – нейтрализатор – не работает после нейтрализ.;
  • 0141 – кислородный элемент после нейтрализ. не работает нагреватель;
  • 0171 – слабая подача топлива;
  • 0172 – сильная подача топлива;
  • 0201 – инжектор 1-й камеры, система оборвана;
  • 0202 – инжектор 2-й камеры, система оборвана;
  • 0203 – инжектор 3-й камеры, система оборвана;
  • 0204 – инжектор 4-й камеры, система оборвана;
  • 0217 – перегрев двигателя;
  • 0230 – система реле бензонасоса не работает;
  • 0261 – инжектор 1-го цилиндра, коротит;
  • 0263 – ПО инжектора 1-й камеры не работает;
  • 0264 – инжектор 2-й камеры, коротит;
  • 0266 – ПО инжектора 2-го цилиндра не работает;
  • 0267 – инжектор 3-й камеры, коротит;
  • 0269 – ПО инжектора 3-й камеры не работает;

0270 – инжектор 4-й камеры, коротит;

0506 – слишком занижена частота холостого хода;

Как проводится самодиагностика


Зажмите кнопку, чтобы начать диагностику

Основные ошибки на Приоре мы разобрали, теперь стоит узнать, как выполняется самодиагностика. В ВАЗ 2170 с 16 клапанами предусмотрен специальный контроллер, с помощью которого выполняется диагностика. Если у вас установлен бортовой компьютер, то диагностика выполняется на нем. Также существует специальное оборудование, позволяющее провести более глубокую проверку систем Приора 16 кл.

Так как на большинстве автомобилей Приора 16 уже присутствует бортовой компьютер, мы рассмотрим вариант без использования специальных устройств. Начинается диагностика с активации режима теста. Работа проходит по следующей схеме:

КодОписаниеP0102 Цепь датчика массового расхода воздуха, низкий уровень сигнала Р0103 Цепь датчика массового расхода воздуха, высокий уровень сигнала P0112 Цепь датчика температуры впускного воздуха, низкий уровень сигнала Р0113 Цепь датчика температуры впускного воздуха, высокий уровень сигнала Р0116 Цепь датчика температуры охлаждающей жидкости, выход сигнала из допустимого диапазона Р0117 Цепь датчика температуры охлаждающей жидкости, низкий уровень сигнала Р0118 Цепь датчика температуры охлаждающей жидкости, высокий уровень сигнала Р0122 Цепь датчика положения дроссельной заслонки, низкий уровень сигнала Р0123 Цепь датчика положения дроссельной заслонки, высокий уровень сигнала Р0130 Датчик кислорода до нейтрализатора неисправен Р0131 Цепь датчика кислорода до нейтрализатора, низкий уровень выходного сигнала Р0132 Цепь датчика кислорода до нейтрализатора, высокий уровень выходною сигнала Р0133 Цепь датчика кислорода до нейтрализатора, медленный отклик на изменение состава смеси Р0134 Цепь датчика кислорода до нейтрализатора неактивна Р0135 Датчик кислорода после нейтрализатора неисправен Р0136 Датчик кислорода после нейтрализатора неисправен Р0137 Цепь датчика кислорода после нейтрализатора, низкий уровень сигнала Р0138 Цепь датчика кислорода после нейтрализатора, высокий уровень сигнала Р0140 Цепь датчика кислорода после нейтрализатора неактивна Р0141 Датчик кислорода после нейтрализатора, нагреватель неисправен Р0171 Система топливоподачи слишком бедная Р0172 Система топливоподачи слишком богатая Р0201
Р0202
Р0203
Р0204 Форсунка цилиндра 1 (2,3,4), обрыв цели управления Р0261
Р0264
Р0267
Р0270 Форсунка цилиндра 1 (2,3,4), замыкание цели управления на массу Р0262
Р0265
Р0271 Форсунка цилиндра 1 (2,3,4), замыкание цепи управления на бортовую сеть Р0300 Обнаружены случайные/множественные пропуски воспламенения Р0301
Р0302
Р0303
Р0304 Цилиндр 1 (2,3,4), обнаружены пропуски воспламенения Р0327 Цепь датчика детонации, низкий уровень сигнала Р0328 Цепь датчика детонации, высокий уровень сигнала Р0335 Цепь датчика положения коленчатого вала неисправна Р0336 Цепь датчика положения коленчатого вала, выход сигнала из допустимого диапазона Р0340 Датчик положения распределительного вала неисправен Р0342 Цепь датчика положения распределительного вала, низкий уровень сигнала Р0343 Цепь датчика положения распределительного вала, высокий уровень сигнала Р0422 Эффективность нейтрализатора ниже порога Р0441 Систем улавливания паров бензина, неверный расход воздуха через клапан продува адсорбера Р0480 Реле вентилятора 1, цепь управления неисправна Р0600 Датчик скорости автомобиля неисправен Р0606 Система холостого хода, низкие обороты двигателя Р0507 Система холостого хода, высокие обороты двигателя Р0560 Напряжение бортовой сети ниже порога работоспособности системы Р0562 Напряжение бортовой сети, низкий уровень Р0663 Напряжение бортовой сети, высокий уровень Р0601 Контроллер ЭСУД ошибка контрольной суммы Р0615 Дополнительное реле стартера, обрыв цепи управления Р0616 Дополнительное реле стартера, замыкание цепи управления на массу Р0617 Дополнительное реле стартера, замыкание цепи управления на бортовую сеть P1135 Нагреватель датчика кислорода до нейтрализатора, цепь управления неисправна P1141 Нагреватель датчика кислорода после нейтрализатора, цепь управления неисправна Р1386 Контроллер ЭСУД ошибка канала обнаружения детонации Р1410 Клапан продувки адсорбера, замыкание цепи управления на бортовую сеть Р1425 Клапан продувки адсорбера, замыкание цепи управления на массу Р1426 Клапан продувки адсорбера, обрыв цепи управления Р1501 Реле бензонасоса, замыкание цепи управления на массу Р1502 Реле бензонасоса, замыкание цепи управления на бортовую сеть Р1513 Регулятор холостого хода, замыкание цепи управления на массу Р1514 Регулятор холостого хода, цепь управления неисправна Р1541 Рале бензонасоса, обрыв цепи управления Р1570 Иммобилизатор, цепь неисправна Р1602 Контроллер ХУД пропадание напряжения питания Р1606 Цепь датчика неровной дороги, выход сигнала из допустимого диапазона Р1616 Цепь датчика неровной дороги, низкий уровень сигнала Р1617 Цепь датчика неровной дороги, высокий уровень сигнала Р1640 Контроллер ЭСУД ошибка чтения-записи EEPROM-памяти

Стирание кодов ошибок в памяти EСМ происходит при отключении питания. Если Вам нужно их стереть, необходимо при выключенном зажигании отключить плюсовую клемму аккумулятора на 10 – 15 сек. Соответственно самодиагностику нужно проводить не менее чем через 10 – 20 мин. эксплуатации автомобиля (лучше на разных нагрузках), после последнего отключения аккумулятора.

ВНИМАНИЕ. При отключении аккумулятора могут быть потеряны предустановки критичных дополнительных устройств (магнитола, сигнализация и т.д.). В этом случае можно просто отключить предохранитель эл.блока, если к данной цепи не подключены критичные устройства. В противном случае можно снять разъем с самого эл.блока. Кроме того, в ЕСМ будут потеряны коды коррекции и до их восстановления (до 30 мин. эксплуатации) стоит воздержаться от динамичной езды и резких ускорений.

Диагностический разъем

Очень часто в автомобилях ВАЗ возникают различные ошибки, и на самом деле не обязательно ехать к мастеру для их диагностики, достаточно считать код ошибки и посмотреть его значение в таблице ошибок.


Коды ошибок одинаковы и подходят к следующим маркам ВАЗ:

1118 Kalina (Калина), 2104, 21041, 2105, 2107, 21074, 2109, 21093, 21099, 2110, 21102, 21103, 2111, 2112, 2113, 2114, 21114, 21124, 2115 с двигателем инжектор 8 и 16 клапанов, 21150, 21154, 2131, 2170 Priora (Приора), 2190 Granta (Гранта), 2123, 21214, 2131 Niva (Нива);

Таблица ошибок ВАЗ

  • регулярное использование низкокачественного горючего;
  • нарушение герметичности воздухозабора;
  • отсутствие искры;
  • повреждение или физический износ цилиндрических устройств.

Если замена горючего не помогла, необходимо выполнить диагностику системы забора воздуха. Следует произвести подтяжку крепежных хомутов, поменять воздушный фильтрующий элемент и проверить давление в рампе (нормированный показатель – не более 2,8 атм).Также необходимо выполнить диагностику:

  • высоковольтных проводов, подключенных к дефектному цилиндру;
  • свечей зажигания;
  • проверить возможное окисление в местах подключения кабелей.
  • поломка датчика массового расхода воздуха;
  • обедненная или обогащенная топливовоздушная смесь в цилиндрах мотора;
  • неисправность блока электронной системы управления двигателем.

Для устранения проблемы можно попробовать заново обучить дроссельную заслонку, для этого выполняются следующие действия:

  1. Отключить блок управления любым доступным способом. Для этого можно отсоединить аккумуляторную батарею на несколько часов или использовать диагностическое оборудование.
  2. Произвести активацию зажигания на несколько минут. В этот момент заслонка дроссельного узла должна начать перемещение. На этом этапе нельзя выжимать педали или запускать силовой агрегат.
  3. Отключить зажигания и подождать около 30 секунд, после чего опять его включить. Затем двигатель можно запускать.
  • очистка дроссельного узла;
  • адаптация дросселя;
  • поджатие контактных зажимов на дроссельном узле.
  • двигатель автомобиля не запускается или глохнет без причины;
  • увеличился расход потребления топлива;
  • некорректно работают электронные устройства и механизмы;
  • пропала мощность силового агрегата и т. д.
  1. Отключить разъем от блока управления двигателем.
  2. Выполнить визуальную диагностику колодки. Все контакты на выходе устройства очищаются, производится удаление загрязнений, если они имеются.
  3. Проверить провода, подключенные к микропроцессорному модулю. Поврежденные электроцепи подлежат замене.
  4. Разобрать корпус устройства, аккуратно раскрутив болты и удалив составляющий части.
  5. Проверить состояние платы. Если на ней видны следы влаги, выполняется ее просушка в сухом и теплом месте. Для этой цели нельзя использовать бытовой фен, печку или открытый огонь.
  1. Силовой агрегат работает более двадцати минут.
  2. Двигатель функционирует на холостых оборотах.
  3. Диагностика микропроцессорным модулем клапана продувки адсорбера дала отрицательный результат.
  4. Блок управления вычислил, что объем кислорода после нейтрализаторного устройства значительно выше нормированного показателя.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также: