Рабочим телом теплового двигателя является газ который совершает работу при расширении

Обновлено: 05.07.2024

ДВИГАТЕЛЬ ТЕПЛОВОЙ
машина для преобразования тепловой энергии в механическую работу. В тепловом двигателе происходит расширение газа, который давит на поршень, заставляя его перемещаться, или на лопатки колеса турбины, сообщая ему вращение. Примерами поршневых двигателей являются паровые машины и двигатели внутреннего сгорания (карбюраторные и дизельные). Турбины двигателей бывают газовые (например, в авиационных турбореактивных двигателях) и паровые.
См. также
АВИАЦИОННАЯ СИЛОВАЯ УСТАНОВКА;
ТУРБИНА.
ОБЩИЕ ПОЛОЖЕНИЯ
В поршневых тепловых двигателях горячий газ расширяется в цилиндре, перемещая поршень, и тем самым совершает механическую работу. Для превращения прямолинейного возвратно-поступательного движения поршня во вращательное движение вала обычно используется кривошипно-шатунный механизм. В двигателях внешнего сгорания (например, в паровых машинах) рабочее тело нагревают за счет сжигания топлива вне двигателя и подают в цилиндр газ (пар) под высокими температурой и давлением. Газ, расширяясь и перемещая поршень, охлаждается, а давление его падает до близкого к атмосферному. Этот отработанный газ удаляется из цилиндра, а затем в него подается новая порция газа - либо после возврата поршня в исходное положение (в двигателях одинарного действия - с односторонним впуском), либо с обратной стороны поршня (в двигателях двойного действия). В последнем случае поршень возвращается в исходное положение под действием расширяющейся новой порции газа, а в двигателях одинарного действия поршень возвращается в исходное положение маховиком, установленным на валу кривошипа. В двигателях двойного действия на каждый оборот вала приходится два рабочих хода, а в двигателях одинарного действия - только один; поэтому первые двигатели в два раза мощнее при одинаковых габаритах и скоростях. В двигателях внутреннего сгорания горячий газ, который перемещает поршень, получают за счет сжигания смеси топлива и воздуха непосредственно в цилиндре. Для подвода свежих порций рабочего тела и выпуска отработанного газа в двигателях применяется система клапанов. Подвод и выпуск газа производятся при строго определенных положениях поршня, что обеспечивается специальным механизмом, который управляет работой впускных и выпускных клапанов.
ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ
Теоретически любой газ можно использовать в качестве рабочего тела такого двигателя, однако на практике используется только пар, поскольку он может запасти больше энергии, чем какое-либо иное столь же доступное рабочее тело. Если в качестве рабочего тела применить воздух, то для получения той же мощности его придется разогреть до более высокой температуры. А для этого потребуется более сложный нагреватель, чем паровой котел, и более надежная теплоизоляция всех элементов системы.

ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Паровая машина с качающимся цилиндром демонстрирует принцип работы двигателя. Цилиндр прикреплен к монтажной плите и может качаться. Пар через впускное отверстие поступает в цилиндр, толкает поршень, а затем, провернув вал, выходит через выпускное отверстие.


ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Паровая машина с качающимся цилиндром демонстрирует принцип работы двигателя. Цилиндр прикреплен к монтажной плите и может качаться. Пар через впускное отверстие поступает в цилиндр, толкает поршень, а затем, провернув вал, выходит через выпускное отверстие.

ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Пароатмосферная машина Т. Ньюкомена создана в 1705 и является усовершенствованием машины с качающимся цилиндром. В ней имеется отдельный котел. Рабочий ход происходит, когда в цилиндре создается разрежение в результате конденсации пара, и под действием атмосферного давления поршень опускается.


ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Пароатмосферная машина Т. Ньюкомена создана в 1705 и является усовершенствованием машины с качающимся цилиндром. В ней имеется отдельный котел. Рабочий ход происходит, когда в цилиндре создается разрежение в результате конденсации пара, и под действием атмосферного давления поршень опускается.

ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Паровая машина двойного действия с клапаном-золотником представляет собой результат усовершенствования Дж. Уайтом (1782) машины Ньюкомена.


ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Паровая машина двойного действия с клапаном-золотником представляет собой результат усовершенствования Дж. Уайтом (1782) машины Ньюкомена.

ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Прямоточная паровая машина И.Штумпфа позволяет избежать смешивания потоков, что уменьшает тепловые потери.


ДВИГАТЕЛИ ВНЕШНЕГО СГОРАНИЯ. Прямоточная паровая машина И.Штумпфа позволяет избежать смешивания потоков, что уменьшает тепловые потери.


Паровые машины. Достоинства и недостатки. Основное достоинство паровой машины - ее относительная простота и хорошие тяговые характеристики независимо от скорости работы. Это позволяет обойтись без редуктора, что выгодно отличает такой двигатель от двигателя внутреннего сгорания, который на малых оборотах недодает мощность. Поэтому паровая машина очень удобна в качестве тягового двигателя, например, на паровозах. К серьезным недостаткам паровых машин относятся их низкий КПД, сравнительно невысокая максимальная скорость, большой вес и постоянный расход топлива и воды. (Ранее требовалось значительное время, чтобы паровой котел дал пар и двигатель заработал; современные котлы позволяют быстро запустить двигатель.)
Применения. В прошлом паровые машины были по существу единственным первичным двигателем (если не считать водяного колеса), однако в 20 в. их вытеснили электродвигатели, двигатели внутреннего сгорания, газовые и паровые турбины, обладающие более высокими КПД, а также большей компактностью, эффективностью и универсальностью применения. На повозку паровую машину поставили впервые в 1769, однако практически используемые машины появились только в 1860-х годах. В 1906 на паромобиле Стэнли был установлен мировой рекорд скорости 190 км/ч на трассе в Орландо-Бич (шт. Флорида). Однако в последующие 20 лет паровые двигатели на автомобилях были вытеснены бензиновыми двигателями внутреннего сгорания. Паровые двигатели проиграли соревнование по двум причинам: они замерзали зимой и были неэкономичны, поскольку требовали много топлива и воды.
Двигатель Стирлинга. Для применения на автомобилях рассматриваются и другие типы двигателей внешнего сгорания. В двигателе Стирлинга используется горячий воздух, гелий или водород, а не пар. Рабочий цикл двигателя осуществляется за 4 такта: сжатие, нагревание, рабочий ход, охлаждение. Рабочий газ нагревается внешним источником тепла, как в паровой машине, а охлаждается водой, постоянно циркулируя в двигателе. Этот двигатель был изобретен в 1816 шотландцем Р. Стирлингом. Двигатель Стирлинга имеет определенные преимущества по сравнению с паровыми машинами, а именно, слабое воздействие на окружающую среду и довольно высокий КПД. Наиболее совершенные конструкции двигателей Стирлинга разработаны для судов и грузовых автомобилей.

ДВИГАТЕЛИ СТИРЛИНГА с вытеснителем (вверху) и двойного действия (внизу). В обоих случаях сжимается холодный газ и расширяется горячий. В двигателе с вытеснителем это делает дополнительный поршень (вытеснитель). В начале цикла оба поршня раздвинуты (A), холодный газ сжимается между вытеснителем и рабочим поршнем (B), проходит по трубопроводам через нагреватель в верхнюю часть цилиндра (C), где нагретый газ расширяется и перемещает рабочий поршень (D). В двигателе двойного действия за время цикла газ перетекает из одного цилиндра в другой, в которых поршни находятся в противофазе.


ДВИГАТЕЛИ СТИРЛИНГА с вытеснителем (вверху) и двойного действия (внизу). В обоих случаях сжимается холодный газ и расширяется горячий. В двигателе с вытеснителем это делает дополнительный поршень (вытеснитель). В начале цикла оба поршня раздвинуты (A), холодный газ сжимается между вытеснителем и рабочим поршнем (B), проходит по трубопроводам через нагреватель в верхнюю часть цилиндра (C), где нагретый газ расширяется и перемещает рабочий поршень (D). В двигателе двойного действия за время цикла газ перетекает из одного цилиндра в другой, в которых поршни находятся в противофазе.


ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ
В двигателях внутреннего сгорания источником тепла является химическая энергия топлива, а его сгорание происходит внутри двигателя. Поэтому для таких двигателей не требуется котел или какой-то другой внешний нагреватель. Рабочим телом теоретически могут служить многие горючие вещества, однако практически все современные двигатели такого рода работают на бензине или дизельном топливе.
Тепловые циклы. Рабочий цикл любого двигателя внутреннего сгорания имеет четыре стадии: топливовоздушная смесь подается в цилиндр, затем она сжимается, сжигается, и, наконец, отработанные газы удаляются из цилиндра. После этого новый цикл начинается с подачи свежей порции смеси топлива и воздуха. В дизельных двигателях топливо и воздух подаются в рабочий цилиндр раздельно, но в остальном цикл тот же. Существуют два основных цикла работы двигателей: четырехтактный (в котором при каждом ходе поршня вверх или вниз выполняется одна из стадий) и двухтактный (в котором при каждом ходе выполняются две стадии).
Четырехтактный цикл. В четырехтактном цикле впускной клапан открывается, когда поршень находится в верхней точке цилиндра, и свежая порция топлива и воздуха засасывается в цилиндр поршнем, опускающимся вниз и создающим разрежение. Когда поршень достигает нижней точки, впускной клапан закрывается, а поршень, двигаясь вверх, сжимает смесь. Когда поршень достигает верхней точки, смесь воспламеняется, и образующиеся горячие газы, расширяясь, толкают поршень вниз. Когда поршень оказывается в нижней точке, открывается выпускной клапан, а на следующем такте поднимающийся поршень выталкивает отработанные газы, освобождая цилиндр для новой порции топливовоздушной смеси. Весь процесс совершается за четыре хода поршня (вверх или вниз), т.е. за два оборота коленчатого вала. Во время рабочего хода маховик запасает энергию, чтобы поршень мог совершить три других хода до следующего рабочего. Первый двигатель с этим циклом построил в 1876 в Германии Н. Отто.
Двухтактный цикл. В двухтактном цикле свежая порция топливной смеси подается в цилиндр, когда поршень находится в нижней точке; затем смесь сжимается при движении поршня вверх и воспламеняется в конце хода сжатия, как и в четырехтактном цикле. В конце рабочего хода вниз отработанные газы выталкиваются из цилиндра свежей порцией смеси. Таким образом, в двухтактном цикле на каждом обороте вала совершается рабочий ход. Когда при ходе сжатия поршень поднимается, вследствие создающегося под ним разрежения в картер засасывается очередная порция топливной смеси. Во время рабочего хода эта смесь сжимается, пока клапаны не откроют доступ свежей смеси в рабочий цилиндр, а отработанным газам - в атмосферу. Можно обойтись и без клапанов, если правильно рассчитать форму поршня и расположение впускных и выпускных отверстий.
Достоинства и недостатки. Очевидным преимуществом двухтактного двигателя по сравнению с четырехтактным является то, что в нем вдвое чаще совершается рабочий ход, конструкция получается проще и легче (не требуется клапанный механизм, а маховик может иметь меньшую массу, поскольку он должен провернуть двигатель только на полоборота, а не на полтора, как в четырехтактном). Однако в двухтактный двигатель приходится подавать больше топливной смеси, чем в четырехтактный той же мощности, поскольку пространство его рабочего цилиндра не полностью освобождается от продуктов сгорания. Кроме того, укорачивается рабочий ход, в конце которого газы уже покидают рабочий цилиндр. Еще одним недостатком двухтактного двигателя являются проблемы со смазкой. В четырехтактном двигателе картер частично заполнен маслом, которое при вращении коленвала разбрызгивается на стенки цилиндра и создает смазку между ними и поршнем; в двухтактном двигателе топливная смесь захватывает брызги масла, проходя в картер и далее в рабочий цилиндр, и они уносятся с отработанными газами, уменьшая смазку цилиндра. Эта проблема решается добавлением масла в топливную смесь, что приводит к загрязнению выхлопа и ухудшению работы двигателя из-за нагара. Анализ достоинств и недостатков показывает, что сравнительно небольшие двигатели, для которых легкость, компактность и простота важнее проблем смазки и загрязненного выхлопа, предпочтительнее делать двухтактными. Такие двигатели применяются в газонокосилках, небольших мотоциклах и в моделях самолетов. Четырехтактные двигатели чаще делают в виде мощных установок с несколькими рабочими цилиндрами.

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Четырехтактный двигатель: A - впуск; B - сжатие; C - рабочий ход; D - выхлоп. Один рабочий ход за два оборота вала.


ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Четырехтактный двигатель: A - впуск; B - сжатие; C - рабочий ход; D - выхлоп. Один рабочий ход за два оборота вала.

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Двухтактный двигатель: A - впуск и сжатие; B - рабочий ход и выхлоп. Один рабочий ход за оборот вала.


ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Двухтактный двигатель: A - впуск и сжатие; B - рабочий ход и выхлоп. Один рабочий ход за оборот вала.

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Дизельный двигатель: A - впуск воздуха; B - сжатие воздуха, впрыск топлива и воспламенение; C - рабочий ход; D - выхлоп. Один рабочий ход за два оборота вала.


ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Дизельный двигатель: A - впуск воздуха; B - сжатие воздуха, впрыск топлива и воспламенение; C - рабочий ход; D - выхлоп. Один рабочий ход за два оборота вала.

ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Роторный двигатель Ванкеля: A - впуск; B - сжатие; C - рабочий ход; D - выхлоп. Три рабочих хода за оборот вала.


ДВИГАТЕЛИ ВНУТРЕННЕГО СГОРАНИЯ. Роторный двигатель Ванкеля: A - впуск; B - сжатие; C - рабочий ход; D - выхлоп. Три рабочих хода за оборот вала.

Термодинамика возникла как наука с основной задачей – созданием наиболее эффективных тепловых машин.

Тепловая машина или тепловой двигатель – это периодически действующий двигатель, совершающий работу за счет получения теплоты.

Обычно совершение работы в тепловом двигателе производится газом при его расширении. Газ, находящийся в нем, получил название рабочего тела. Зачастую его заменяют на воздух или водяные пары. Расширение газа происходит по причине повышения его температуры и давления.

Устройство, от которого рабочее тело получает тепло Q n , называю нагревателем.

Это понимается как расширение от объема V 1 к V 2 V 2 > V 1 , затем сжатие до первоначального объема. Чтобы значение совершаемой работы за цикл было больше нуля, необходимо температуру и давление увеличить и сделать больше, чем при его сжатии. То есть при расширении телу сообщается определенное количество теплоты, а при сжатии отнимается. Значит, кроме нагревателя тепловой двигатель должен иметь холодильник, которому рабочее тело может отдавать тепло.

Рабочее тело совершает работу циклично. Очевидно, изменение внутренней энергии газа в двигателе равняется нулю. Если при расширении от нагревателя к рабочему телу передается теплота в количестве Q n , то при сжатии Q ' c h теплота рабочего тела передается холодильнику по первому закону термодинамики, учитывая, что ∆ U = 0 , то значение работы газа в круговом процессе запишется как:

A = Q n - Q ' c h ( 1 ) .

Отсюда теплота Q ' c h ≠ 0 . Выгодность двигателя определяется по количеству выделенной и превращенной теплоты, полученной от нагревателя, в работу. Его эффективность характеризуется коэффициентом полезного действия (КПД), определяющимся как:

Запись уравнения ( 2 ) при учитывании ( 1 ) примет вид:

η = Q n - Q ' c h Q n ( 3 ) , КПД всегда.

Машина, отбирающая от тела с меньшей температурой определенное количество теплоты Q c h и отдающая его Q ' n телу с наиболее высокой температурой с Q ' n > Q c h , получила название холодильной машины.

Данная машина должна совершить работу A ' в течение цикла. Эффективность холодильной машины определяется по холодильному коэффициенту, вычисляемому:

a = Q ' n A ' = Q ' n Q ' n - Q c h ( 4 ) .

КПД необратимого теплового двигателя всегда меньше, чем работающего по обратимому циклу.

КПД теплового двигателя

Французским инженером Саади Карно была установлена зависимость КПД теплового двигателя от температуры нагревателя T n и холодильника T c h . Форма конструкции теплового двигателя и выбор рабочего тела не влияет на КПД идеальной тепловой машины:

η m a x = T n - T c h T n ( 5 ) .

Любой реальный тепловой двигатель может обладать КПД η ≤ η m a x .

Принцип работы теплового двигателя

Идеальная машина, модель которой разработал Карно, работает по обратимому циклу, состоящему из двух изотерм ( 1 - 2 , 4 - 3 ) и двух адиабат ( 2 - 3 , 4 - 1 ) , изображенная на рисунке 1 . В качестве рабочего тела выбран идеальный газ. Прохождение адиабатного процесса происходит без подвода и отвода тепла.

Принцип работы теплового двигателя

Q n = T n ( S 2 - S 1 ) ( 6 ) , где S 1 , S 2 являются энтропиями в соответствующих точках цикла из рисунка 1 .

Видно, что участок 3 - 4 характеризуется отдачей тепла холодильнику с температурой T c h идеальным газом, причем количество теплоты равняется получению газом теплоты - Q c h , тогда:

- Q c h = T c h ( S 1 - S 2 ) ( 7 ) .

Выражение, записанное в скобках в ( 7 ) , указывает на приращение энтропии процесса 3 - 4 .

Принцип действия тепловых двигателей КПД

Произведем подстановку ( 6 ) , ( 7 ) в определение КПД теплового двигателя и получаем:

η = T n ( S 2 - S 1 ) + T c h ( S 1 - S 2 ) T n ( S 2 - S 1 ) = T n - T c h T n ( 8 ) .

В выведенном выражении ( 8 ) не выполнялось предположений о свойствах рабочего тела и устройстве теплового двигателя.

По уравнению ( 8 ) видно, что для увеличения КПД следует повышать T n и понижать T c h . Достижение значения абсолютного нуля невозможно, поэтому единственное решение для роста КПД – увеличение T n .

Задача по созданию теплового двигателя, совершающего работу без холодильника, очень интересна. В физике она получила название вечного двигателя второго рода. Такая задача не находится в противоречии с первым законом термодинамики. Данная проблема считается неразрешимой, как и создание вечного двигателя первого рода. Этот опытный факт в термодинамике приняли в качестве постулата – второго начала термодинамики.

Рассчитать КПД теплового двигателя с температурой нагревания 100 ° С и температурой холодильника, равной 0 ° С . Считать тепловую машину идеальной.

Решение

Необходимо применение выражения для КПД теплового двигателя, которое записывается как:

η = T n - T c h T n .

Используя систему С И , получим:

T n + 100 ° C + 273 = 373 ( К ) . T c h = 0 ° C + 273 = 273 ( К ) .

Подставляем числовые значения и вычисляем:

η = 373 - 273 373 = 0 , 27 = 27 % .

Ответ: КПД теплового двигателя равняется 27 % .

Найти КПД цикла, представленного на рисунке 2 , если в его пределах объем идеального газа проходит изменения n раз. Считать рабочим веществом газ с показателем адиабаты γ .

Принцип действия тепловых двигателей КПД

Решение

Основная формула для вычисления КПД, необходимая для решения данной задачи:

η = Q n - Q ' n Q n ( 2 . 1 ) .

Получения тепла газом происходит во время процесса 1 - 2 Q 12 = Q n :

Q 12 = ∆ U 12 + A 12 ( 2 . 2 ) , где A 12 = 0 потому как является изохорным процессом. Отсюда следует:

Q 12 = ∆ U 12 = i 2 R T 2 - T 1 ( 2 . 3 ) .

Процесс, когда газ отдает тепло, обозначается как 3 - 4 , считается изохорным - Q 34 = Q ' c h . Формула примет вид:

Q 34 = ∆ U 34 = i 2 v R T 4 - T 3 ( 2 . 4 ) .

Адиабатные процессы проходят без подвода и отвода тепла.

Произведем подстановку полученных количеств теплоты в выражение для КПД, тогда:

η = i 2 v R T 2 - T 1 + i 2 v R T 4 - T 3 i 2 v R T 2 - T 1 = T 2 - T 1 + T 4 - T 3 T 2 - T 1 = 1 - T 3 - T 4 T 2 - T 1 ( 2 . 5 ) .

Следует применить уравнение для адиабаты процессу 2 - 3 :

T 2 V 1 γ - 1 = T 3 V 2 γ - 1 → T 2 = T 3 V 2 γ - 1 V 1 γ - 1 = T 3 n γ - 1 ( 2 . 6 ) .

Используем выражение для адиабаты процесса 4 - 1 :

T 1 V 1 γ - 1 = T 3 V 2 γ - 1 → T 1 = T 4 V 2 γ - 1 V 1 γ - 1 = T 4 n γ - 1 ( 2 . 7 ) .

Перейдем к нахождению разности температур T 2 - T 1 :

T 2 - T 1 = T 3 - T 4 n Г - 1 ( 2 . 8 ) .

Произведем подстановку из ( 2 . 8 ) в ( 2 . 5 ) :

η = 1 - T 3 - T 4 T 3 - T 4 n γ - 1 = 1 - 1 n γ - 1 = 1 - n 1 - γ ( 2 . 9 ) .


Посмотрев данный видеофрагмент вы узнаете, что такое тепловые двигатели и из каких частей состоит простейший тепловой двигатель. А также познакомитесь с устройством и принципом действия двигателя внутреннего сгорания и паровой турбины.


В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобретя в каталоге.

Получите невероятные возможности




Конспект урока "Работа газа при расширении. Двигатель внутреннего сгорания. Паровая турбина"

Издавна человек задумывался над тем, как сделать механизмы, которые помогали бы ему выполнять тяжёлую работу. Сначала он использовал простые механизмы — рычаги, наклонную плоскость, различные передающие механизмы, блоки и т. п.

С тех пор как человечество познало закономерности тепловых явлений, учёные стремились найти способы использования тепловой энергии, в частности способы преобразования её в механическую. Вы уже знакомы с законом сохранения и превращения энергии и знаете, что внутреннюю энергию можно использовать для совершения механической работы.

Устройства, которые совершают механическую работу за счёт внутренней энергии топлива, называются тепловыми двигателями.

А каков принцип действия теплового двигателя? Ответим на этот вопрос проведя следующий эксперимент. Возьмём цилиндр, внутри которого под поршнем находится газ. Положим на поршень груз, например, гирю, и начнём нагревать газ в цилиндре.


С повышением температуры газа поршень начнёт постепенно перемещаться вверх, поскольку вследствие нагревания газ расширяется. Следовательно, в процессе теплопередачи газ под поршнем выполняет механическую работу, поднимая груз на некоторую высоту.

Если нагревание газа прекратить, то в результате теплообмена с окружающей средой он будет остывать, его объем уменьшится и поршень опустится вниз.

На таком способе преобразования тепловой энергии в механическую, путём выполнения работы, и основывается действие тепловых машин.

В 1781 г. Дж. Уатт продемонстрировал паровую машину, которая приводила в непрерывное вращательное движение вал.


Двигатель Уатта, мощностью 10 л. с., стало возможным установить и использовать в любом месте и для любых целей. Поэтому он на протяжении долгого времени применялся в качестве универсального двигателя, приводящего в движение паровозы, пароходы и даже первые автомобили.

В 1824 г. французский учёный С. Карно предположил, что тепловая машина конструктивно должна состоять из трёх основных частей: нагревателя (то есть источника теплоты), рабочего тела, которое собственно и выполняет работу (например, пар в паровых двигателях), и холодильника, роль которого может выполнять окружающий воздух.


Устройство тепловой машины

В настоящее время существует несколько видов тепловых двигателей:

Это, собственно, паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины и реактивный двигатель.

И сегодня мы с вами более подробно рассмотрим устройство и принцип действия двигателя внутреннего сгорания и паровой турбины.

Начнём с двигателя внутреннего сгорания. Его преимуществом перед другими двигателями является то, что топливо сгорает внутри цилиндра двигателя (отсюда название). Это делает их более дешёвыми и экономичными, а также менее металлоёмкими.

А каков принцип действия двигателя внутреннего сгорания? Ответим на этот вопрос, на примере четырёхтактного двигателя внутреннего сгорания.


Двигатель внутреннего сгорания состоит из цилиндра, в котором перемещается поршень, соединённый с шатуном. Шатун насажен на коленчатый вал и приводит его во вращение при поступательном движении поршня в цилиндре. В верхней части цилиндра имеются два отверстия, в которые вставлены клапаны: впускной и выпускной. Через них в цилиндр поступает горючая смесь, и выходят отработавшие газы. Также в верхней части двигателя располагается свеча зажигания, которая вырабатывает искру для воспламенения горючей смеси.

В четырёхтактном двигателе внутреннего сгорания рабочий цикл состоит из следующих четырёх тактов.

Первый такт — впуск.


Во время этого такта происходит движение поршня вниз от верхней мёртвой точки в нижнюю мёртвую точку. Мёртвыми точками называют крайнее верхнее и нижнее положение поршня в цилиндре двигателя. Давление газа в цилиндре над поршнем при его движении вниз уменьшается, и в него через входной клапан поступает горючая смесь. Выпускной клапан при этом закрыт.

Когда поршень придёт в нижнюю мёртвую точку, закроется и впускной клапан.

Второй такт — сжатие. Поршень движется из нижней точки вверх, клапаны остаются закрытыми, и рабочая смесь сжимается. В результате сжатия температура горючей смеси повышается до трёхсот — шестисот градусов Цельсия, в зависимости от типа двигателя.

При приближении поршня к верхней мёртвой точке в свече зажигания проскакивает искра, и горючая смесь воспламеняется.

Третий такт — это рабочий ход. При сгорании горючей смеси выделяется большое количество теплоты, резко повышаются давление и температура газа. Затем газ расширяется: его объём увеличивается, а давление уменьшается при неизменной температуре. Расширяясь, газ толкает поршень и соединённый с ним коленчатый вал, совершая механическую работу. При этом газ охлаждается, так как часть его внутренней энергии превращается в механическую энергию.

И наконец четвёртый такт — это выпуск. После того как поршень придёт в нижнюю мёртвую точку, давление в цилиндре уменьшится. При движении поршня вверх открывается выпускной клапан, и начинается выпуск отработавших газов. В конце этого такта выпускной клапан закрывается. Затем цикл повторяется.

Обратите внимание на то, что из четырёх тактов только один — третий — является рабочим. Для того чтобы поршень переходил нижнюю и верхнюю мёртвые точки, на коленчатый вал насаживают массивный маховик. Благодаря его инертности коленчатый вал сразу не прекращает вращение. И поршень проходит мёртвые точки.

Изобретение двигателя внутреннего сгорания сыграло огромную роль в автомобилестроении. Первый автомобиль с бензиновым двигателем был создан в 1886 г. Г. Даймлером.

В том же году, но чуть позже, появился трёхколёсный автомобиль К. Бенца. Его скорость была целых восемнадцать километров в час!

А уже в 1892 г. свой первый четырёхколёсный автомобиль построил и Г. Форд.


Современный двигатель состоит из четырёх или восьми цилиндров.


Четырёх цилиндровый ДВС

В четырёхцилиндровом двигателе в каждом из цилиндров поочерёдно осуществляется рабочий ход, и коленчатый вал всё время получает энергию от одного из поршней, поэтому его вращение происходит непрерывно, без остановок.

Паровая турбина — другой тип теплового двигателя, который широко применяют на современных тепловых электростанциях.

Паровая турбина представляет собой насаженный на вал массивный диск, на котором укреплены лопасти. На лопасти поступает пар из сопла.


Работает турбина следующим образом. Пар, полученный в паровом котле, имеет температуру, близкую к шестистам градусам Цельсия. Он направляется в сопло и в нём расширяется. При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара.

Струя пара, обладающая большой кинетической энергией, поступает из сопла на лопасти турбины и передаёт им часть своей энергии, приводя турбину во вращение. Вал и диск с лопастями образуют ротор турбины, который помещается в корпусе. По всей поверхности корпуса устанавливаются сопла. Обычно турбины имеют несколько дисков, каждый из которых получает часть энергии пара.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.


Рис. 1. Тепловой двигатель

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1 ). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты . Именно за счёт этого тепла двигатель совершает полезную работу .

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае .

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу . В процессе сжатия над газом совершается положительная работа (а сам газ совершает отрицательную работу ). В итоге полезная работа газа за цикл: .

Разумеется, должно быть 0' alt='A>0' /> , или (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на -диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2 ).


Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции . Аналогично, работа газа при сжатии равна площади криволинейной трапеции со знаком минус. В результате работа газа за цикл оказывается положительной и равной площади цикла .

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты .

Суммарное количество теплоты, полученное газом за цикл, оказывается равным . Согласно первому закону термодинамики:

где — изменение внутренней энергии газа за цикл. Оно равно нулю: , так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

Как видите, : не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы к количеству теплоты , поступившему от нагревателя:

С учётом соотношения (1) имеем также

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно , а КПД двигателей внутреннего сгорания около .

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.


Рис. 3. Холодильная машина

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3 ).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты , в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы , совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину :

Таким образом, на -диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа , совершаемая внешним источником (рис. 4 ).


Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя и температуры холодильника ?

Пусть, например, максимальная температура рабочего тела двигателя равна , а минимальная — . Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5 ). В этом случае машина функционирует как тепловой двигатель.


Рис. 5. Цикл Карно

Изотерма . На участке газ приводится в тепловой контакт с нагревателем температуры и расширяется изотермически. От нагревателя поступает количество теплоты и целиком превращается в работу на этом участке: .

Адиабата . В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке .

При расширении газ совершает положительную работу , и за счёт этого уменьшается его внутренняя энергия: .

Изотерма . Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры . Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты и совершает отрицательную работу .

Адиабата . Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу , а изменение внутренней энергии положительно: . Газ нагревается до исходной температуры .

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя и температурой холодильника .

Так, в приведённом выше примере имеем:

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Читайте также: