Софт стартеры устройства плавного пуска двигателей

Обновлено: 04.07.2024

Плавный пуск асинхронного электродвигателя необходим для продления его срока эксплуатации и минимизации работ, связанных с устранением возможных поломок.

Необходимость плавного запуска

Для того чтобы обеспечить необходимую пусковую мощность, следует увеличить номинальную мощность питающей сети. По этой причине оборудование может значительно подорожать. Причем очевиден и перерасход электроэнергии.

Одним из недостатков асинхронного электродвигателя является большой ток пуска. Он превышает номинальный в 5 — 10 раз. Ток с большими бросками может также возникнуть при торможении двигателя или при его реверсе. Это ведет к нагреву обмоток статора, а также слишком больших электродинамических усилий в частях статора и ротора.

Если вследствие возникшей аварийной ситуации двигатель перегрелся и вышел из строя всегда рассматривается возможность его ремонта. Но после перегрева параметры трансформаторной стали изменяются. Отремонтированный электродвигатель обладает номинальной мощностью на 30% меньшей, чем у него была ранее.

Для того чтобы ток ограничить используют пусковые реакторы, автотрансформаторы, резисторы и устройства плавного пуска двигателей — софт-стартеры.

Прямой запуск

В электросхеме прямого пуска машина непосредственно подключена к сетевому напряжению питания.

Электросхема прямого пуска

На схеме выше показана характеристика пускового тока при прямом старте. При таком подключении повышение температуры в обмотках машины минимальное.

Подключение осуществляется с помощью контактора (пускателя). В схеме применяется реле перегрузки для защиты электродвигателя. Однако такой метод применим, когда нет ограничений по току.

Во время старта машины пусковой момент ограничивают, чтобы сгладить резкий рывок, вследствие которого могут выйти из строя механические части привода и подсоединенные механизмы.

По этой причине производители крупных электродвигателей запрещают их прямой пуск.

Управление стартом по этой схеме состоит из трех контакторов, реле перегрузки и реле времени, управляющим контакторами.

Схема подключения звезда-треугольник

Такой способ эффективен, но применяется он не всегда.

Старт через автотрансформатор

Схема подключения через трансформатор

Этот способ применяется с использованием в электросхеме автотрансформатора, который соединен с машиной последовательно. Он служит для того, чтобы запуск произошел при пониженном на 50 — 80% от номинального напряжении. Вследствие этого пусковой ток и вращающий пусковой момент уменьшатся. Временной интервал переключения от пониженного напряжения к полному корректируется.

Однако здесь есть и недостаток. В процессе работы машина переключается на сетевое напряжение, что приводит к резкому скачку тока.

Устройства плавного пуска

В условиях плавного старта асинхронной машины с использованием в электросхеме силового блока тиристоров подается ток несинусоидальной формы. Ускорение и торможение происходят за короткий промежуток времени. Многие собирают устройство плавного пуска своими руками. Это намного снижает его цену.

Схема устройства плавного пуска

В этой схеме тиристоры подключены в цепи параллельно по встречному принципу. К общему электроду поступает управляющее напряжение. Такое устройство принято называть симистором. В случае трехфазной системы он присутствует в каждом проводе.

Для того чтобы отвести тепло, выделяемое при нагревании полупроводников, применяются радиаторы. Габариты, вес и цена устройств при этом возрастает.

Существует и другой вариант для решения проблемы нагрева. В схему подключают шунтирующий контакт. После старта контакты замыкаются. В этом случае возникает параллельная цепь, сопротивление которой меньше сопротивления полупроводников. А ток, как известно, выбирает путь наименьшего сопротивления. Пока происходит этот процесс, симисторы остывают. Пример такого подключения приведен ниже на рисунке.

Схема устройства плавного пуска с шунтирующим контактом

Типы устройств плавного старта

Их можно разделить на четыре категории.

  • Регулирующие пусковой момент. Принцип действия их таков, что они осуществляют контроль одной фазы. Но при контроле плавного старта не снижают пусковые токи. Поэтому спектр применения их ограничен.
  • Регулирующие напряжение с отсутствием сигнала обратной связи. Работают они по заданной программе и являются одними из самых распространенных в использовании.
  • Регулирующие напряжение с сигналом обратной связи. Их принцип действия — способность менять напряжение и регулировать величину тока в заданном диапазоне.
  • Регулирующие ток с наличием сигнала обратной связи. Являются самыми современными из всех устройств подобного типа. Обеспечивают наибольшую точность управления.

Софт-стартеры

Софт-стартер

Современные устройства плавного пуска выполнены, на микропроцессорах. И это существенно увеличивает их функциональные возможности по сравнению с аналоговыми. Эти устройства называют софт-стартерами. Они увеличивают срок службы исполнительных механизмов и самих электродвигателей.

С ними старт электродвигателя происходит с постепенным увеличением напряжения. Кроме этого, регулируется время разгона и время его торможения. Для того чтобы пониженное начальное напряжение не могло в электросхеме значительно снизить пусковой момент, его устанавливают в диапазоне 30 — 60% от номинального.

Плавная регулировка напряжения дает возможность плавного ускорения двигателя до номинальной скорости.

Схема подключения софт-стартера

Необходимо отметить, что с применением софт-стартеров уменьшилось количество реле и контакторов в электрической цепи. Само по себе устройство софт-стартеров не является сложным. Они просты в монтаже и эксплуатации. Электросхема подключения показана на рисунке справа.

Однако существует ряд особенностей, которые обязательно следует учитывать при их выборе.

Одна из особенностей работы асинхронного двигателя, которую можно назвать недостатком – большой пусковой ток при старте, который может превышать номинальный в 8 и более раз. Это обусловлено принципом его работы – при подаче на него номинального напряжения он стремится сразу выйти на полную мощность. Данная особенность проявляется в большой мере при пуске через линейный контактор, это также называют прямым пуском двигателя.

В некоторых механизмах принципиально важно, чтобы пуск был плавный, без рывков и ударов. Это касается прежде всего технологического оборудования, у которого высокий момент инерции при запуске. Например, тяжелые маховики и конвейеры с продукцией, а также мощные насосы и вентиляторы.

Иными словами, большой пусковой ток и большой момент инерции механической нагрузки на валу двигателя – взаимосвязанные вещи, от который часто необходимо избавляться.

Кстати, в некоторых странах законодательно запрещено включать электродвигатели большой мощности прямой подачей напряжения, поскольку это создает помехи, падение напряжения и перегружает электросети, что может вызвать проблемы у других потребителей и даже стать причиной аварий.

Как обеспечить плавный пуск двигателя

Существуют несколько вариантов уменьшения пускового тока, которые используются на практике.

1. Применение преобразователей частоты. В этом случае можно обеспечить сколь угодно долгий разгон, а также ограничить превышение номинального тока, например, на уровне 110%. Это лучший способ плавного пуска, однако, он используется далеко не всегда, поскольку преобразователь частоты – дорогостоящее электронное устройство, которое имеет множество функций. Если нужно только ограничение пускового тока и плавный разгон, преобразователь частоты будет избыточен, и большинство его функций останутся не востребованы.

3. Когда речь идет только о минимизации пускового тока, наиболее оптимальный вариант – использование устройства плавного пуска (softstarter).

Ниже рассмотрим принципы работы устройств плавного пуска (УПП) и схемы их включения.

Как работает устройство плавного пуска

Рассмотрим пошагово, какие процессы происходят при работе УПП, и какие регулировки влияют на его работу.

В минимальной конфигурации устройства плавного пуска (УПП) имеют три регулировки – время разгона, время торможения, и напряжение пуска.

При включении действующее напряжение на двигателе определяется регулировкой напряжения пуска, которое обычно составляет 30…80 % от номинала. Понижение напряжения и его регулировка производится тиристорами, которые открываются (пропускают ток) только в части полупериода сетевого напряжения. Фазой открытия тиристоров можно менять напряжение на двигателе.


Таким образом, регулируя фазу открытия тиристоров, можно менять ток и крутящий момент двигателя.

В зависимости от конкретного случая может потребоваться большой начальный момент, чтобы двигатель мог тронуться с места. Но для уменьшения пускового тока начальное напряжение лучше устанавливать минимально возможным.

При большом времени разгона пусковой ток будет минимальным. Однако, следует выбирать его оптимальным, обычно 10…20 секунд, в зависимости от типа нагрузки. При слишком большом времени разгона возможен излишний нагрев тиристоров. Критерием оптимального времени разгона служит время выхода двигателя на номинальные обороты и номинальный рабочий ток. По истечении времени разгона включается контактор байпаса, который может быть установлен внутри УПП, или быть внешним. Во время работы двигателя на номинальном режиме весь питающий ток идет только через этот контактор, при этом тиристоры в работе не участвуют.

Если пришел сигнал на остановку двигателя, контактор байпаса выключается. Вступают в работу тиристоры, которые работают в обратном режиме – постепенно уменьшают фазу (время открытия в течение полупериода) с максимальной до нуля. Если время торможения не важно, то можно его установить минимальным (0-2 секунды), это увеличит ресурс тиристоров, и улучшит тепловой режим электрощита в целом. Двигатель будет останавливаться на выбеге, к ак при питании через обычный контактор. Но если важно исключить гидроудар, или плавно замедлить движение объектов без их резкой остановки и падения, то функция плавной остановки будет очень полезной.

В УПП также могут присутствовать такие регулировки: управление крутящим моментом двигателя, конечное напряжение при останове, номинальный ток двигателя, ограничение пускового тока. Современные УПП имеют ЖК-дисплей и кнопки управления, которые позволяют конфигурировать несколько десятков различных параметров для тонкой настройки.

Схемы включения

Как во всех подобных устройствах, в схеме включения УПП имеется силовая часть, и часть управления.

Силовая часть схемы – это та часть, через которую проходит ток питания двигателя. Ток двигателя поступает через силовые клеммы L1, L2, L3 (или R, S, T) на входы тиристоров или контактора байпаса, и затем через выходные клеммы T1, T2, T3 (U, V, W) подается на двигатель.

Схема управления включает в себя в основном цепи запуска и остановки. Напряжение питания цепей управления обычно составляет 24…220 В, и может быть внешним, либо браться из УПП.

С участием УПП можно реализовать схему плавного пуска электродвигателя с реверсом. Для этого нужно на входе установить реверсивный контактор по классической схеме. Важно сделать блокировку для предотвращения реверса двигателя во время его вращения.

Допускается запускать УПП и начинать вращение двигателя подачей питания на цепи управления и силовые цепи. Это может быть удобно при дистанционной подаче силового питания. Однако, при этом следует предусмотреть меры безопасности – обслуживающий персонал должен понимать, что при подаче питания на УПП двигатель может начать вращаться.

Пример схемы

Рассмотрим для примера схему включения УПП ABBPSTX.


В силовую часть входят: автомат защиты двигателя (вводной), тиристоры и контактор байпаса (внутри УПС), и собственно двигатель.

Для питания цепей управления подается фазное напряжение 220В и нейтраль на клеммы 1, 2. В УПП имеется встроенный блок питания, который вырабатывает напряжение 24 В для питания органов управления. Допускается также применение внешнего БП 24 В, при этом напряжение на клеммы 1, 2 подавать не нужно.

При соответствующем подключении и настройках кнопки могут быть как с фиксацией, так и без. Управление может производиться не только с кнопок, но и через контакты реле или контроллера.

Имеются и другие входы для различных режимов работы, а также три выходных реле с сухими контактами, которые могут использоваться по необходимости для включения дополнительных контакторов и индикации.

Защита

В дешевых УПП часто не реализована защита от перегрузки по току, перегреву и короткому замыканию. В таких случаях необходимо устанавливать нужную защиту и включать УПП по схеме, рекомендованной производителем.

В состав защиты могут входить:

Пример неправильной установки защиты, в результате которой произошел пожар:


Следует сказать, что даже если в УПП входят все виды защит, необходимо на вводе силового питания и питания схемы управления устанавливать соответствующие защитные автоматы либо предохранители.

Двухфазные УПП

В некоторых бюджетных моделях управление выходным напряжением происходит только по двум фазам. Таким образом, происходит экономия на тиристорах и на одном контакте контактора байпаса.

Это решение имеет право на жизнь, и главный плюс таких УПП – цена.

Однако, имеются минусы, о которых стоит знать:

Заключение

УПП нашли достойное место там, где не нужна регулировка скорости вращения двигателя, но важным аспектом является минимизация пусковых перегрузок питающей сети и приводимых в движение механизмов. Однако, в последнее время их всё больше вытесняют преобразователи частоты, которые имеют гораздо более широкий спектр возможностей управления двигателем.


Асинхронный электродвигатель отличается большими значениями пусковых токов. Скачок тока двигателя сопровождается скачком крутящего момента, вызывая неблагоприятные механические условия, которые могут привести к повреждению как самого двигателя, так и приводимого устройства (например, гидроудар в насосном оборудовании). Пусковые токи также приводят к просадкам напряжения в электросети и перегрузкам проводки. Применение устройства плавного пуска (УПП, софтстартера) дает возможность снизить скачки тока и крутящего момента. Это делается путем плавного увеличения напряжения во время запуска двигателя. Таким образом, он продлевает срок службы устройств, сводит к минимуму простои и повышает стабильность сети. УПП регулирует сетевое напряжение от пониженного уровня до максимального, что позволяет асинхронным двигателям запускаться плавно, поскольку их пусковой ток ограничен.

Выбор софтстартера

Выберите УПП в соответствии с номинальным током двигателя и пусковой мощностью. Номинальный ток софтстартера должен быть равен или превышать номинальный ток двигателя. Для стандартного применения можно выбрать УПП в соответствии с номинальной мощностью двигателя. Для приводов с высоким пусковым моментом или высокой инерцией требуется более тщательный выбор. Для машин с тяжелым запуском следует выбирать устройство в соответствии с его перегрузочной способностью.

Параллельное подключение нескольких двигателей к одному софтстартеру

Выберите устройство плавного пуска в соответствии с суммой номинальных токов всех двигателей.


Провода, контакторы, сетевые фильтры

Используемые кабели должны соответствовать действующим нормам на месте установки. Для частых запусков и высоких пусковых токов используемые кабели и контакторы должны быть соответствующего размера. Предел нагрузки контакторов должен быть указан в документации.

Момент инерции двигателя и нагрузки

Такие устройства, как центрифуги, некоторые типы (осевых) вентиляторов имеют большой момент инерции. Двигатель, приводящий в движение такой агрегат, будет медленно разгоняться. При этом запуск может сопровождаться значительным пусковым током. Это следует учитывать при выборе устройства плавного пуска.

Время пуска и пусковой ток

Для запуска машины требуются крутящий момент и время. Крутящий момент привода связан с током, который должен подаваться на двигатель при запуске устройства. Разным устройствам для запуска требуется разный ток и разное время.

При пуске двигателю привода насоса потребуется в 3 раза больший номинальный ток. Двигатель той же мощности, приводящий в движение дробилку, потребует в 4–5 раз больше номинального тока. Время загрузки для обоих устройств будет разным. Насос завершит запуск до 10 секунд, а дробилка - только через полминуты. Несмотря на одинаковую мощность двигателя, для каждой машины придется использовать разные устройства плавного пуска.

Цикл нагрузки

Каждому устройству плавного пуска дается номинальный рабочий цикл, который включает: допустимое количество пусков в час, допустимый пусковой ток и его продолжительность. Эти параметры нельзя превышать во время работы

Рабочие условия

Каждое устройство может работать в определенных условиях окружающей среды. При выборе устройства плавного пуска следует обратить внимание на все: от рабочей температуры, влажности, запыленности и т.д. Если поблизости установлены другие электрические устройства, выделяющие тепло, условия охлаждения устройства плавного пуска могут ухудшиться. В этом случае, например, увеличьте расстояние и / или обеспечьте дополнительную вентиляцию. Чрезмерная запыленность приведет к затруднениям отвода тепла и перегреву устройства.




Внедрение модуля плавного пуска в электродвигатели переменного тока является экономически эффективной процедурой. Благодаря снижению энергопотребления и технического обслуживания вложения быстро окупаются. Это позволяет пользователям пользоваться преимуществами этих устройств с момента их покупки.

Есть отличная альтернатива устройству плавного пуска это преобразователь частоты. Его стоимость отличается в бОльшую сторону, но и функциональные возможности намного шире.

Софтстартер ABB PSR6-600-70 3кВт 400В (100-240В AC) устройство плавного пуска

Для решения проблем пускового момента, рабочие цепи асинхронных электродвигателей оснащаются устройствами плавного пуска, другое название – софстартеры. Принцип работы таких устройств основывается на методе фазового управления. Преимущества фазовых софстартеров состоит в автономном режиме работы, не требующем постоянного контроля со стороны обслуживающего персонала. Такие устройства плавного пуска актуальны для электродвигателей с тяжелыми пусковыми нагрузками, с высокой частотой запуска. Приборы оснащены встроенными установками коррекции мощности и автоматически выбирают экономный режим работы.

По параметрам регулирования устройства данного типа делятся на: однофазные, двухфазные и трехфазные. Последние управляют не только пусковым моментом электродвигателя, но осуществляют динамическое торможение.

В нашем магазине вы можете заказать устройства плавного пуска (софстартеры) лучших европейских брендов, таких как шведско-швейцарская компания ABB и французский электротехнический концерн Schneider Electric.

Компания АВВ представляет две серии устройств:

  • Софстартеры PSR, для электродвигателей мощностью от 1,5 до 55 кВт.
  • Усовершенствованный аналог, со встроенной функцией защиты двигателя, серии PSE, с характеристиками мощности от 7,5 до 200 кВт.

Устройства плавного пуска Schneider Electric образуют три линейки серии Altistart, с различными диапазонами мощности: от 1,5 до 15 кВт; от 4 до 400 кВт; от 4 до 400кВт.

Вся продукция сертифицирована в соответствии международным стандартам качества и безопасности.

Производители электрооборудования

Читайте также: