Vortex tube принцип работы

Обновлено: 04.07.2024

Газ под давлением подается по касательной в вихревая камера и ускоренный с высокой скоростью вращение. Из-за конический сопло на конце трубки только внешняя оболочка сжатого газа может выходить на этом конце. Остальная часть газа вынуждена вернуться во внутренний вихрь уменьшенного диаметра во внешнем вихре.

Содержание

Метод работы

Для объяснения температурного разделения в вихревой трубе есть два основных подхода:

Фундаментальный подход: физика

Этот подход основан только на физических принципах и не ограничивается только вихревыми трубками, но применим к движущемуся газу в целом. Это показывает, что разделение температур в движущемся газе происходит только из-за сохранения энтальпии в движущейся системе отсчета.

Тепловой процесс в вихревой трубе можно оценить следующим образом: 1) Адиабатическое расширение набегающего газа, которое охлаждает газ и превращает его теплосодержание в кинетическую энергию вращения. Полная энтальпия, которая является суммой энтальпия и кинетическая энергия сохраняется. 2) Периферический вращающийся поток газа движется к горячему выходу. Здесь рекуперация тепла эффект имеет место между быстро вращающимся периферическим потоком и противоположным медленно вращающимся осевым потоком. Здесь тепло передается от осевого потока к периферическому. 3) Кинетическая энергия вращения превращается в тепло за счет вязкой диссипации. Температура газа повышается. Поскольку в процессе рекуперации тепла общая энтальпия увеличилась, эта температура выше, чем у поступающего газа. 4) Часть горячего газа выходит из горячего выхода, унося избыточное тепло. 5) Остальной газ уходит в сторону холодного выхода. Когда он проходит к выходу для холода, его тепловая энергия передается периферическому потоку. Хотя температура на оси и на периферии везде примерно одинакова, вращение на оси медленнее, поэтому общая энтальпия также ниже. 6) Охлажденный газ с низкой общей энтальпией из осевого потока выходит из холодного выхода.

Следовательно, вихревая труба представляет собой безроторную турбодетандер. [4] Он состоит из безроторной турбины с радиальным притоком (холодный конец, центр) и безроторного центробежного компрессора (горячий конец, периферия). Выходная мощность турбины преобразуется компрессором на горячем конце в тепло.

Феноменологический подход

Этот подход основан на наблюдениях и экспериментальных данных. Он специально разработан с учетом геометрической формы вихревой трубы и деталей ее потока и разработан с учетом конкретных наблюдаемых явлений сложного потока вихревой трубы, а именно турбулентности, акустических явлений, полей давления, скорости воздуха и многих других. Опубликованные ранее модели вихревой трубки феноменологичны. Они есть:

  1. Радиальный перепад давления: центробежное сжатие и расширение воздуха
  2. Радиальная передача углового момента
  3. Радиальный акустический поток энергии
  4. Радиальный тепловой насос

Подробнее об этих моделях можно найти в недавних обзорных статьях о вихревых трубках. [5] [6]

Феноменологические модели были разработаны в более раннее время, когда турбинное уравнение Эйлера не было тщательно проанализировано; в инженерной литературе это уравнение изучается в основном для того, чтобы показать производительность турбины; в то время как температурный анализ не проводится, поскольку охлаждение турбин имеет более ограниченное применение в отличие от выработки электроэнергии, которая является основным применением турбин. Феноменологические исследования вихревой трубы в прошлом были полезны для представления эмпирических данных. Однако из-за сложности вихревого потока этот эмпирический подход смог показать только некоторые аспекты эффекта, но не смог объяснить принцип его действия. Посвященные эмпирическим деталям, эмпирические исследования долгое время заставляли эффект вихревой трубки казаться загадочным, а его объяснение - предметом дискуссий.

История

Эффективность

Вихревые трубки имеют меньшую эффективность, чем традиционные кондиционер оборудование. [21] Они обычно используются для недорогого точечного охлаждения при наличии сжатого воздуха.

Приложения

Текущие приложения

Коммерческие вихревые трубки предназначены для промышленного применения и обеспечивают перепад температуры до 71 ° C (127 ° F). Без движущихся частей, без электричества и без хладагента, вихревая трубка может производить охлаждение до 6000 БТЕ / ч (1800 Вт), используя только 100 стандартных кубических футов в минуту фильтрованного сжатого воздуха при давлении 100 фунтов на кв. Регулирующий клапан на выходе горячего воздуха регулирует температуру, потоки и охлаждение в широком диапазоне. [22] [23]

Вместо того чтобы бороться с этой аэродинамической нестабильностью, технология Vortex использует ее, максимизируя результирующие колебания и извлекая из них энергию. Естественно, конструкция такого устройства абсолютно не похожа на обычную турбину. Вместо обычных башни, гондолы и лопастей устройство имеет неподвижную мачту, генератор и пустотелый, легкий, полужесткий стекловолоконный цилиндр на вершине.

Ветряная турбина без лопастей

Основные преимущества Vortex

Одним из главных преимуществ Vortex является исключительно низкая цена. Фактическая нормализованная стоимость производства энергии для типичной оффшорной фермы составит $0.035/кВт·ч (порядка 35 евро за МВт·ч), включая капитальные затраты, эксплуатацию и обслуживание, аренду земли, страхование и административные расходы.

Ветряная турбина без лопастей

Это ставит предложенную технологию на нижнюю границу ценового диапазона подобных проектов, делая ее весьма конкурентоспособной не только по отношению к устройствам генерации мощности с использованием альтернативной или возобновляемой энергии, но даже по сравнению с традиционными технологиями.

Столь значительное снижение цены обусловлено сокращением производственных затрат, поскольку мачта и оборудование генератора, в основном, представляют собой одно целое. Это позволяет исключить из конструкции гондолу, опорные механизмы и лопасти – самые дорогостоящие компоненты традиционных ветрогенераторов. Грубая оценка показывает, что выигрыш в стоимости производства по сравнению с обычной ветряной турбиной может составлять 51%. Изготовление, перевозка, строительство и монтаж также значительно упрощаются, оставаясь при этом операциями, стандартными для индустрии ветроэнергетики.

Существует еще один отличительный признак, дающий Vortex конкурентное преимущество над другими установками. Благодаря тому, что генератор (и центр тяжести) находятся ближе к земле, Vortex упрощает процедуры монтажа, использования и технического обслуживания. В противоположность этому, типичная гондола обычного ветрогенератора устанавливается более чем в 80 метрах над поверхностью земли.

Ветряная турбина без лопастей

В конструкции полностью отсутствуют механические элементы, которые могут изнашиваться от трения, что, согласно оценкам, позволит, по сравнению с традиционными турбинами, сократить эксплуатационные расходы на 53%, исключив необходимость замены масла или большинства механических частей, требующуюся многолопастным ветряным турбинам на протяжении 20-летнего срока их службы.

Конечно же, Vortex не застрахована от усталости. Ветер может вызывать смещение и скручивание элементов структуры, прежде всего, эластичной штанги, в особенности, в нижней ее части, противостоящей наибольшим силам. Однако проведенные компанией исследования подтвердили, что нагрузки, испытываемые штангой, далеки от предельно допустимых режимов основного строительного материала генератора – углеродного волокна. Компьютерное моделирование показывает, что срок службы установки будет находиться в диапазоне между 32 и 96 годами.

Ветряная турбина без лопастей
Будь здесь Дон Кихот, что бы он подумал о
мельнице без лопастей?

Конструкция Vortex сейчас занимает 30% площади, требуемой обычному ветрогенератору. Практически, это площадь круга, по траектории которого совершает движение вершина мачты при максимальной скорости ветра. При той же высоте, которую имеют современные ветряные турбины, она может извлекать до 40% содержащейся в воздухе энергии, что, безусловно, является более чем хорошим показателем. Система немного проигрывает в эффективности преобразования энергии, достигая уровня порядка 70% от эффективности традиционных генераторов, но связано это только с тем, что при ее создании акцент делался на исключение трущихся и изнашивающихся деталей.

Кроме того, как ожидается, намного снизится вред, наносимый популяции птиц, поскольку характер и размах движений Vortex отличаются от традиционной ветряной турбины, что делает установку лучше различимой.

При частоте колебаний оборудования менее 20 Гц воздействие звука становится несущественным, открывая путь к созданию полностью бесшумных ветряных ферм будущего.

Поскольку Vortex не убивает птиц и не шумит, проект активно поддерживается несколькими экологическими защитными организациями, включая ассоциацию SEO Birdlife.

Стадия испытаний

Для доказательства реализуемости технологии Vortex провела испытания множества прототипов в аэродинамической трубе. В настоящее время Vortex Bladeless оптимизирует методику испытаний в реальных условиях, чтобы завершить создание небольшой действующей модели.

На начальном этапе Vortex сосредоточится на производстве небольших изделий. Первым будет генератор мощностью 100 Вт, имеющий высоту 3 м и вес 10 кг. Турбина разрабатывалась специально для автономной работы в единой системе с солнечными панелями. Такое решение будет рентабельным для домохозяйств с уже установленными солнечными батареями и сможет производить электричество в то время, когда солнечная энергия не вырабатывается. Начав работать, этот продукт, получивший название Vortex Atlantis, положит начало пилотной программе компании. Это будет солнечная панель, использующая энергию ветра.

Вторая установка, которую подготовят к производству в течение года, будет также малоразмерной. 4-киловаттный генератор высотой 13 м и весом 100 кг, как и первый, 100-ваттный генератор, предназначенный для автономного использования, будет оптимизирован для совмещенных с солнечными батареями гибридных систем, использующих общие электрические инверторы.

Основная цель будет достигнута через четыре года, когда Vortex представит ветрогенератор мощностью более одного мегаватта.

О Vortex Bladeless

Ветряная турбина без лопастей
Изобретатель безлопастной турбины
Дэвид Яньес.

Vortex Bladeless – испанская стартап-компания, занимающаяся разработкой ветряной турбины без лопастей и запатентовавшая в процессе работы множество технических решений. Работа поддерживалась грантами фонда Repsol, испанской инвестиционной компанией Spanish Angels и кредитами испанского правительства. В апреле 2015 года Vortex переместилась в Бостон и сформировала консультативный совет с участием представителей Гарвардского университета, IDEO, TerraForm Power и Dat Venture. В настоящее время компания ведет переговоры с инвесторами из США, чтобы запустить следующий этап финансирования в рамках краудфандингового проекта, целью которого станет коммерциализация технологии. Сегодня компания насчитывает 11 сотрудников. Учредители встретились несколько лет назад. Дэвид Яньес (David Yañez) является автором идеи, Рауль Мартинг (Raul Marting) занимается вопросами, связанными с организацией компании, а Дэвид Сурайол (David Suriol) управляет бизнесом.

Демонстрационное видео

Вихревая труба, или труба Ранка-Хилша, представляет собой устройство, позволяющее получить потоки холодного и горячего воздуха при подаче на вход сжатого газа и его последующей закрутке в камере энергоразделения. В данной статье рассматривается эффективность использования вихревой трубы в качестве охладителя. Обсуждены технические и экологические преимущества использования систем подобного рода. Приведены и описаны основные типы конструкций вихревых труб. В статье также приводится краткий обзор результатов экспериментальных исследований и численного моделирования, приведенных в предыдущих работах по изучению температурного разделения в вихревых трубах.

Ranque-Hilsch vortex tube as perspective device of low temperature obtaining

Naberezhnye Chelny institute (branch) of Kazan Federal University, 423810, Republic of Tatarstan, Naberezhnye Chelny, Mira avenue, 68/19 (1/18),

Kazan State Power Engineering University, 420066, Republic of Tatarstan, Kazan, Krasnoselskaya street, 51

The vortex tube (the Ranque-Hilsch tube) is a device that enables the separation of hot and cold air as compressed gas flows tangentially into the vortex chamber through inlet nozzles. The paper describes on investigation of the effectiveness of the vortex tube as a refrigerator. Engineering and environmental advantages of such systems were discussed. The basic types of constructions of the vortex tubes were given and described. The paper also reviews the experimental investigations and numerical simulations presented in previous studies on temperature separation in the vortex tubes.

Необходимость получения холода была и остается одной из важных задач для различных сфер жизнедеятельности. Как, например, в быту - для сохранения продуктов питания, так и в промышленности, где низкотемпературные технологии получили

широкое применение на всех этапах производственного цикла - от изготовления изделия, до его испытания [1].

Наиболее популярным решением в области холодопроизводства является применение парокомпрессионных машин. Однако, основным недостатком хладогенераторов подобного типа является необходимость использования хладагентов (фреон, аммиак), которые могут нанести вред как жизни и здоровью человека, так и окружающей среде [2].

Альтернативным способом получения холода является применение установок на основе вихревой трубы Ранка-Хилша. Суть вихревого эффекта заключается в разделении газа при закручивании в цилиндрической или конической камере на две фракции. На периферии образуется закрученный поток с большей температурой, а в центре -закрученный охлажденный поток, причем вращение в центре происходит в другую сторону, чем на периферии. На рис.1 представлена одна из возможных конструкций вихревой трубы [3].

—>—I ПоОбоЗ сжатого Выход холодного 1 Воздуха Выход горячего

Рис. 1. Схема вихревой трубы [3]: 1 - сопловой ввод; 2 - камера энергоразделения; 3 - диффузор холодного потока; 4 - развихритель горячего потока; 5 - сопловой сужающийся канал.

Можно выделить следующие достоинства вихревых труб по сравнению с парокомпрессионными машинами:

К недостаткам указанного способа получения холода можно отнести:

Перечисленные положительные свойства вихревых труб позволяют придать технологическим системам такие качества, как безопасность, экологичность, технологичность, быстродействие, простота в изготовлении и эксплуатации. Указанные достоинства уже позволяют конкурировать с парокомпрессионными установками [4,5].

По энергетической эффективности и удельной холодопроизводительности вихревые трубы значительно уступают турбинным и парокомпрессионным машинам. Поэтому в областях, где холод является постоянной необходимостью, вихревые аппараты неконкурентоспособны по отношению к другим видам холодильной техники. Однако, во многих технологических процесса требуется только периодическая потребность в получении холода: при подогреве термостатированных растворов, обработка зерна от вредителей, охлаждении деталей посадки и тормозов, фрикционных узлов, тиристоров, охлаждение блоков управления программных станков и т.д. [3,6] В этих случаях при отсутствии дополнительных производственных площадей для размещения холодильного оборудования, мелкосерийной продукции, когда нецелесообразно содержать стационарные установки, вихревые холодильники выигрывают по сравнению с фреоновыми.

Можно выделить следующие виды конструкций вихревых труб:

Принцип работы цилиндрической вихревой трубы [7] заключается в следующем. Газ под высоким давлением подается тангенциально в вихревую камеру через закручивающее устройство. Расширяясь внутри трубы, он организует быстро вращающийся вихрь. Так как диаметр диафрагмы меньше диаметра трубы, то газ начинает двигаться аксиально в сторону конического дросселя по периферийной части трубы. По мере уменьшения закрутки потока по длине трубы возникает обратный градиент давления в приосевой области, вынуждающий газ двигаться от дросселя в сторону диафрагмы.

Особенностью прямоточной вихревой трубы является организация отвода холодного и горячего потоков с одной стороны камеры энергоразделения. Температуры истекающего холодного и горячего потоков для данных труб могут отличаться на 140-230°С. При этом на практике, как правило, используются температуры до -40°С. Данная конструкция оказалась малоэффективной по сравнению с другими и на практике используются редко [3].

Стремление сократить длину вихревой трубы привело к созданию конструкции с конической формой камеры энергоразделения. Угол раскрытия конической части обычно составляет 3°-6° при длине 5-9 калибров. Исследования вихревых труб данной конструкции показали, что создаваемый ими эффект охлаждения выше, чем у цилиндрической при одинаковых условиях.

С целью увеличения эффективности вихревой трубы путем отбора части тепла периферийного вихря была создана конструкция охлаждаемой трубы. Принцип ее работы основан на том, что энергия отводится не только потоком горячего газа, но и дополнительным охлаждающим веществом. Отбор тепла можно осуществлять путем использования рубашки охлаждения или дополнительного внешнего оребрения.

А.П. Меркулов и Ш.А. Пиралишвили [8] предложили для повышения изоэнтропного КПД вводить в приосевую зону камеры энергоразделения со стороны дросселя дополнительный поток газа. Двухконтурные вихревые трубы позволяют сократить потребную мощность на получение заданной холодопроизводительности за счет увеличения расхода холодного воздуха при сохранении температуры.

Вихревая труба с искривленной геометрией пока достаточно редкая конструкция. Она может быть использована в тех случаях, когда, в силу своих габаритов, не могут быть применены трубы стандартной конфигурации. Искривленные вихревые трубы уступают обычным по получаемой разнице температур, но позволяют достичь большей холодопроизводительности [9].

Таким образом, на сегодняшний день существует множество различных типов конструкций вихревой трубы. Но, несмотря на широкое использование эффекта энергоразделения, на данный момент среди ученых нет единого мнения о природе его возникновения. Сложность изучения данного явления связана со сложностью движения потока в вихревой трубе, а также наличием значительных турбулентных пульсаций. Существующие на сегодняшний день гипотезы, объясняющие природу вихревого эффекта, подразделяются на четыре группы:

В настоящее время основными методами изучения процессов, происходящих в вихревой трубе, являются экспериментальные исследования и численное моделирование.

Рассматривая проведенные экспериментальные исследования, можно выделить две основные группы: исследования влияния геометрии вихревой трубы и параметров входного потока на ее эффективность и изучение макроструктуры потока. В таблице 1 приведены некоторые результаты опытных изысканий разных лет, начиная с обнаружения вихревого эффекта в 1933 году.

Сводная таблица экспериментальных исследований вихревых труб [10]

19561957 Hartnett, Eckert 76,2 2,4 3,5 -40 1956 Мартыновский, Алексеев 4,4/28 12 - -65 1957 Scheller, Brown 25,4 6,1 15,6 -23 0,506

1960 Takahama, Kawashima 52,8 - - - 1962 Sibulkin 44,5 - - - 1962 Reynolds 76,2 - - - 1962 Blatt, Trusch 38,1 4 - -99 0

2012 Хие и др. 60 2,6 1,4 -7,2 С развитием методов численного решения задач гидрогазодинамики некоторые исследователи перешли к изучению вихревого эффекта путем математического моделирования на основе уравнений Навье-Стокса и законов сохранения. Особенно активное развитие это направление исследований получило с конца 90-х гг. с появлением вычислительной техники достаточной производительности. Первые модели имели большое количество допущений и показывали только качественную сходимость. С развитием компьютерной техники стали применяться более точные модели, обеспечившие более достоверные результаты численных экспериментов (таблица 2).

Сводная таблица экспериментов по численному моделированию [10]

Исследователи Модель потока Модель вязкости Сходимость результатов с натурными экспериментами

ЫпёеМгош-Ьа^ (1971) Несжимаемый Алгебраическая модель вязкости Сходимость низкая, но улавливается тенденция к сходимости

БсЫеш (1982) 2D, сжимаемый Алгебраическая модель вязкости Низкая, но качественная сходимость

Ашйат и др. (1983) 2Э, сжимаемый Алгебраическая модель вязкости Достаточная, но предположения сомнительны

Борисов и др. (1993) Несжимаемый Алгебраическая модель вязкости Качественная сходимость

Ош1:оп, Ваккеп (1999) 2Э, сжимаемый к-е модель Достаточно высокая

ЕгоЫт§вёог£, и^ег (1999) 2Э, сжимаемый к-в модель Достаточно высокая

Promvonge (1999) 2Э, сжимаемый ASM и к-е модели Высокая

Behera и др. (2005) 3Э, сжимаемый к-е и RNG k-s модели Достаточно высокая

Aljuwaihel и др. (2005) 2Э, сжимаемый k-s и RNG к-е модели Достаточно высокая

Skye и др. (2006) 2Э, сжимаемый к-е и RNG к-е модели Достаточно высокая

Eiamsa-ard, Promvonge (2006) 2Э, сжимаемый ASM и к-е модели Высокая

Secchiroli, Ricci, Montelpare, D&Alessandro (2009) 2Б, 3Б, сжимаемый RNG к-е, RSM (для 2D), LES (для 3D) модели Достаточно высокая

Baghdad, Ouadha, Imine, Addad (2011) 3Э, сжимаемый к-е, к-ю, SST к-ю, Достаточно высокая (к-е, к-ю,

RSM модели ББТ к-ю) Высокая (ИЗМ)

Bovand, Valipour, Dincer, Tamayol (2013) 3Э, сжимаемый RNG к-е модель Достаточно высокая

Таким образом, вихревые трубы продолжают оставаться актуальным объектом изучения для исследователей. В настоящее время, в силу невысокой энергетической эффективности, охладителям подобного типа сложно конкурировать с традиционными холодильными установками. Однако, четкое понимание процессов, вызывающих вихревой эффект, позволит создать более точную математическую модель явлений, происходящих в вихревой трубе. Это, в свою очередь, даст возможность повысить энергоэффективность установок на основе трубы Ранка-Хилша, а также проводить оценку производительности разрабатываемых охладителей на ранних этапах проектирования.

1. Пархимович А.Ю. Имитационное моделирование температурной стратификации закрученных потоков в вихревых хладогенераторах: дис. на соиск. учен. степ. канд. техн. наук: 05.04.13 / Пархимович А.Ю.; Уфимский гос. авиационный техн. ун-т. -Уфа, 2008. - 124 с.

2. Ховалыг Д.М., Синицына К.М., Бараненко А.В., Цой А.П. Энергоэффективность и экологическая безопасность техники низких температур // Научный журнал НИУ ИТМО. Сер. Холодильная техника и кондиционирование. - 2014. - №1. - С. 2.

3. Хаит А.В. Исследование эффекта энергоразделения с целью улучшения характеристик вихревой трубы: дис. на соиск. учен. степ. канд. техн. наук: 05.04.13 /

Хаит А.В.; Уральский фед. ун-т им. первого президента России Б.Н. Ельцина. -Екатеринбург, 2012. - 199 с.

4. Носков А.С., Хаит А.В., Бутымова А.П., Плешков С.Ю., Ловцов А.В. Энергоэффективность и экономическая целесообразность применения систем искусственного климата на базе вихревой трубы // Инженерно-строительный журнал. - 2011. - №1. - С. 17-23.

5. Носков А.С., Алехин В.Н., Ловцов А.В., Хаит А.В. Энергетическая эффективность систем искусственного климата на базе вихревой трубы // Академический вестник Уралниипроект РААСН. - 2011. - №3. - С. 65-69.

6. Азаров А.И. Вихревые трубы в промышленности. Изобретатель - машиностроению. Энергосбережение и вихревой эффект: исследование и освоение инновационных проектов. - СПб.: Изд-во ЛЕМА, 2010. - 170 с.

7. Алексеев Г.В. Математические методы в пищевой инженерии: Учебное пособие/ Г.В. Алексеев Г.В., Вороненко Б.А., Лукин Н.И. - СПб.: Лань, 2012. - 176 с.

10. M.S. Valipour, N. Niazi. Experimental modeling of a curved Ranque-Hilsch vortex tube refrigerator// Int. J. Refrig. 34 (4) (2011) P.1109-1116.

11. S. Eiamsa-ard, P. Promvonge, Review of Ranque-Hilsch effects in vortex tubes// Renew. Sustain. Energy Rev. 12 (7) (2008) P.1822-1842.

1. Parhimovich A.Y. Simulation of temperature stratification of swirled flow in the vortex cold generators. - Ufa, 2008. - 124 p.

2. Khovalyg D.M., Sinitsyna K.M., Baranenko A.V., Tsoi A.P. Energy efficiency and ecological safety technicians of low temperature. Science Journal of University ITMO Institute of Refrigeration and Biotechnologies. - 2014. - №1. - P. 2.

3. Chait A.V. Research of energy separation effect in purpose of improvement of vortex tube. - Ekaterinburg, 2012. - 199 p.

4. Noskov A.S., Chait A.V., Butymova A.P., Pleshkov S.Y., Lovtsov A.V. Energy effectiveness and economics expediency of using of climatic systems based on vortex tube. Magazine of civil engineering. - 2011. - №1. - P. 17-23.

5. Noskov A.S., Alekhin V.N., Lovtsov A.V., Chait A.V. Energy efficiency of the climatic systems based on vortex tube and ways for its increasing. Journal " Akademicheskij vestnik URALNIIPROEKTRAASN". - 2011. - №3. - P. 65-69.

6. Azarov A.I. Азаров А.И. Vortex tubes in industry. Researcher for engineering. Energy saving and vortex effect: research and development of innovative projects. - SPb.: LEMA, 2010. - 170 p.

7. Alex G.V. The Mathematical methods in food инженерии: Scholastic allowance. G.V. Alex G.V., Voronento B.A., Luton N.I. - SPB.: Fallow deer, 2012. - 176 s.

10. M.S. Valipour, N. Niazi. Experimental modeling of a curved Ranque-Hilsch vortex tube refrigerator. Int. J. Refrig. 34 (4) (2011) P.1109-1116.

11. S. Eiamsa-ard, P. Promvonge. Review of Ranque-Hilsch effects in vortex tubes. Renew. Sustain. Energy Rev. 12 (7) (2008) P.1822-1842

ВИХРЕВАЯ ТРУБА vortex tube ranque-hilsch tube ТЕМПЕРАТУРНОЕ РАЗДЕЛЕНИЕ temperature separation ХОЛОДИЛЬНАЯ ТЕХНИКА refrigeration ЭКОЛОГИЯ ecology ТРУБА РАНКА-ХИЛША

Vortex Bladeless – это генератор, который работает за счет вибраций, возникающих в момент, когда ветряной поток проходит вдоль поверхности устройства, создавая аэроупругие колебательные движения на его поверхности. Генератор напоминает высокий столб обтекаемой формы с цилиндром в земле.

В отличие от классической ветряной мельницы у него нет лопастей. Под воздействием ветра, мачта колеблется, пружинит из стороны в сторону, благодаря чему производится энергия. Другими словами, это ветряное устройство – вовсе не турбина. Вихревые ветрогенераторы больше похожи на солнечные панели, нежели на обычные ветровые электростанции, они так же просты и экономичны.

Проект финансируется Европейским Союзом, Программой Инноваций Horizon 2020.

Устройство

Внешний столб вибрирует от силы ветра, без ограничений в амплитуде. Его основание прочно зафиксировано в зеле блоком в форме цилиндра. Устройство собрано с использованием смол, укрепленных углеродом и стекловолокном. Это обеспечивает высокую прочность без потери КПД.

Конструкция ветрового устройства сильно отличается от обычного ветряка. Вместо привычной башни с лопастями есть только мачта из очень прочных и легких материалов.

Такая конструкция снижает издержки на производство и упрощает монтаж.


Преобразование энергии

Устройство улавливает энергию ветра благодаря аэродинамике вихревого потока. Если углубляться в гидромеханику, то когда ветер проходит через мачту столба, поток видоизменяется в круговые вихри. Как только их частота становится ближе к частоте мачты, столб начинает колебаться и взаимодействовать с ветром. Это называется Вихревая Индуцированная Вибрация (VIV).

Гидродинамика Vortex Technology

В структурной инженерии, аэронавтике и архитектуре стараются избежать вихревой индуцированной вибрации (VIV). Турбины Vortex же, напротив, улавливают и увеличивают энергию от колебаний и аэродинамической нестабильности. Форма мачты устройства специально разработана для достижения максимальной производительности при средних скоростях ветра. В обычных городских условиях она способна очень быстро адаптироваться к изменениям направления ветра и колебаний потоков воздуха.

Специально разработано для потребительского рынка

Генератор переменного тока

Генераторы переменного тока – уже известная технология, но Vortex её усовершенствовал и запатентовал. Такая конструкция устраняет необходимость в смазке и позволяет сократить объемы технического обслуживания.


Настройка частоты

Частота производительности Vortex пропорциональна скорости ветрового потока, но каждое устройство имеет собственную частоту колебаний. Чтобы уравнять частоту ветра с собственной частотой каждого устройства, вы должны изменить массу тела (чем больше масса, тем меньше собственная частота) и жесткость (чем больше жесткость, тем выше частоты), среди ряда других показателей.

Таким образом, запатентованная система Vortex получает электроэнергию, самораспределяя нужные изменения конструкции для взаимодействия с потоком ветра, что позволяет без усилий захватывать более широкий диапазон скоростей ветра, с начальной скоростью от 3 м/с. Без какого-либо механического или ручного вмешательства. Таким образом точка блокировки аэрогенератора расширяется.

Вихревой эффект Фон Кармана

Эффект вихревых дорожек Vortex Street или Vortex Shedding впервые описал гений аэронавтики Теодор фон Карман в 1911году. Эффект создается боковыми силами ветра на объекте, погруженном в ламинарный поток, из-за чего возникают кольцевые вихри, а это может стать инженерной проблемой для тонких конструкций – мачт, башен и дымоходов. Как пример, разрушение узкого моста в Такоме в 1940 году, США.

Vortex успешно подстраивает частоту устройства, чтобы взаимодействовать с частотами ветра в широком диапазоне скоростей ветра

Понимание колебаний

Идея Vortex заключается в использовании одной и той же силы для производства энергии. Колеблясь, система использует энергию движения в качестве обычного генератора.

Вы найдете много примеров эффекта Vortex Shedding в повседневной жизни. Используя различные физические явления, Команда Vortex создала множество вычислительных моделей, которые показывают правильное создание формы и параметров для развития и повышения эффективности таких проектов.

Вычислительное моделирование

Принцип улавливания энергии вихрей ветрового потока (VIV, Вихревая Индуцированная Вибрация) – это 3D-феномен. А поскольку наша технология нова, мы должны создавать новые модели и подтверждать их эффективность. 3D-моделирование основано на числе Рейнольдса, важной безразмерной величине в гидромеханике, а она используется, чтобы помочь предсказать направление потоков воздуха в различных ситуациях потока жидкости.

Мы прилагаем все свои усилия чтобы найти лучший способ достижения результатов исходя из доступного количества ресурсов и времени. Используем программное обеспечение Altair, также сотрудничаем с Суперкомпьютерным центром Барселоны, используя их вычислительные мощности.


Технология защищена во всем мире 6 различными патентными семействами.

Основные функции

МАТЕРИАЛЫ И СРОК СЛУЖБЫ


Поддерживание разных уровней нагрузки при переменных скоростях ветра предъявляет высокие требования к запчастям. Выхревые устройства полностью исключают механические элементы, которые могут изнашиваться из-за трения. Это исключает затраты на техобслуживание. Vortex построено из полимеров углеродного волокна, пластмассы, стали, неодима и меди, — износ которых приходит далеко после срока эксплуатации ветровой башни.

Долговечность

Конечно, страховки от изнашиваемости любой турбины нет. Под большими нагрузкам и изгибами от колебаний, материал со временем может рушится, но Vortex уделила этому вопросу особое внимание.
Углеродный стержень рассчитан на максимальную амплитуду 2,7º, при ней материал лишь минимально деформируется. После вычислений, мы проанализировали и выбрали лучший материал, который принесёт огромный срок службы.

Эффективность затрат

Бюджетность – одно из ключевых преимуществ Vortex. Мы сделали стоимость производимой электроэнергии доступной, чтобы быстрее окупить инвестиции.


Это делает нашу технологию конкурентоспособной не только в сравнении с альтернативными или возобновляемыми источниками энергии, но даже по сравнению с традиционными технологиями.

Простой лаконичный дизайн, не требующий большого количества механизмов и материалов, тоже способствует сокращению денежных расходов. Легкий вес и центр тяжести, расположенный близко к земле, снижает требования к фундаменту и облегчая установку. Таким образом, избавляет от нужды в дорогостоящих комплектующих, в отличие от традиционных ветрогенераторов.

Vortex сотрудничает с неправительственными организациями, университетами и ведущими научно-исследовательскими центрами по всему миру.

Потенциал линейки

Vortex занимает до 30% рабочей площади обычного 3-лопастного ветряка с такой же высотой. При преобразовании энергии ветра, выработка электроэнергии пропорциональна площади диаметра лопастей. Следовательно, мы можем сказать, что Vortex вырабатывает меньше электроэнергии. С другой стороны, меньшая площадь позволяет устанавливать на одной и той же поверхности больше устройств Vortex, компенсируя энергоэффективность за счет экономии пространства и установки более дешевого оборудования.

Ориентировочная номинальная мощность Vortex Tacoma (2,75 м) составляет 100 Вт. Преимущества системы:

  • принимает потоки ветра с любой стороны/направления;
  • отсутствие силы сопротивления;
  • устройство запускается и выключается само, без нужды в механических тормозах;
  • нисходящие потоки ветра не влияют на энергоэффективность благодаря отсутствию лопастей;
  • производит электроэнергию даже от слабых ветров;
  • почти бесшумная работа.

Адаптация к атмосфере

В условиях города потоки ветра очень беспорядочны, что создает ряд проблем для обычных ветряков. Кроме того, из-за нисходящих потоков ветра работа обычных ветряных мельниц вызывает проблемы при установке нескольких агрегатов в одном месте, если не соблюдать достаточное расстояние между ними.

Вихревые ветрогенераторы проще использовать из-за круговой всенаправленности устройства. Vortex очень быстро адаптируется к изменениям направления и интенсивности ветра, независимо от турбулентности.

Низкая стоимость, простота установки и дешевое обслуживание. Подключи свой вихрь!

Экологичность


Воздействие на окружающую среду

Простая конструкция и легкий вес позволяют сократить необходимое количество материалов для производства вихревой турбины. При этом упрощается производственный процесс.

Отсутствие смазочных материалов – отсутствие отходов!

Остаточный вес Vortex Tacoma после промышленной переработки – менее 15 кг. При правильной установке в земле и калибровке устройства оно будет абсолютно бесшумным. Помехи для радиосигналов практически отсутствуют.

Воздействие на дикую природу

Хотя небольшие ветряные турбины, как правило, не представляют серьезной проблемы для местной фауны. Конструкция Vortex позволит птицам и летучим мышам легко избегать их во время полета.

Читайте также: