Бифилярная катушка тесла для чего она нужна

Обновлено: 05.07.2024

Интересная особенность простых и бифилярных катушек.

Способов намотки катушек, одного из основных элементов электротехнических и радиотехнических устройств, существует множество. Кто как хочет, так и наматывает, преследуя определенные цели. В данной статье мы проведем анализ некоторых свойств простых и бифилярных катушек. Упрощённо способ намотки этих катушек показан на рис.1.

Рис.1 Бифилярная и простая катушка

Обычная намотка, при которой витки проводника равномерно наматываться на круглый (или иной формы) каркас либо по часовой, либо против часовой стрелке применялась давно, например, в первых селеноидах или электромагнитах. Основная цель, которую преследовали создатели таких катушек – получить устройство, с помощью которых можно получить магнитное поле, аналогичное тому, что образует постоянный магнит. А если внутри такой катушки разместить сердечник из мягкого железа. То есть, можно получить электромагнит с такими показателями, которые получить от постоянных магнитов невозможно.

Бифилярную намотку начали использовать широко только в последнее время. Причем особого порядка здесь не просматривается. И в основном считается, что бифилярная намотка используется тогда, когда по каким-то причинам надо создать катушку с минимальной или нулевой индуктивностью. Свою версию бифилярной плоской катушки использовал Тесла в качестве вторичной катушки своего трансформатора.

Но я хотел бы обратить внимание читателей на такие факты, которые нигде еще никто не рассматривал. И, естественно, на те следствия, которые получаются из этого. Рассмотрим сечение части витков обычной катушки (рис.2). В соответствии с законом Ампера магнитные поля витков с током, который на рис.2. течет от читателя, между витками направлены навстречу друг другу. Это приводит к тому, что с позиций классической электродинамики, напряженность магнитного поля между витками снижается, а с позиций эфирной теории между витками формируется область с пониженным эфирным давлением. И с любых позиций между витками простой катушки появляются силы, которые будут сжимать катушку вдоль её оси. И если катушка при этом будет сделана из упругого металла, то при пропускании тока по катушке её длинна будет уменьшаться, а при выключении тока пружина будет стремиться возвратиться к первоначальному состоянию. При совпадении частоты подаваемого тока с частотой колебаний такой упругой пружины-катушки можно ввести систему в резонанс. Но это уже следствие и только один из вариантов применения этого эффекта. А пока запомним, что между витками простой катушки при протекании тока в любом направлении тока между витками катушки формируются области с пониженным давлением эфира.

Рис.2 Разрез витков простой катушки с силовыми линиями магнитного поля.

Теперь посмотрим на сечение части витков бифилярной катушки (рис.3). Обратим внимание на то, что теперь направление тока между соседними витками противоположно. А это по закону Ампера приводит к тому, что с позиций классической электродинамики между витками формируются области с повышенной напряжённостью магнитного поля, а с позиций эфирной теории имеет место создание областей с повышенным эфирным давлением. Подавая импульсы тока на бифилярную катушку можно получить своеобразный генератор ударных эфирных волн, если правильно подобрать форму высоковольтных импульсов с крутыми передними и задними фронтами.

Рис.2 Разрез витков бифилярной катушки с силовыми линиями магнитного поля.

Какие следствия мы можем получить из этого простого, давно известного, но практически не исследованного, эффекта? В известном трансформаторе Николы Тесла первичная катушка как раз и используется для генерации ударных эфирных волн. И думаю, что именно рассматриваемый эффект и позволяет создавать ударные эфирные волны. Так как первичная обмотка в трансформаторе Тесла состоит из трех витков, то за счет интерференции вне катушки поле практически равно нулю, а внутри катушки создается сложная картина из областей повышенного и пониженного эфирного давления - солитон, форма которого зависит от многих параметров – диаметра первичной катушки, числа витков в нёй, диаметра провода, формы подаваемых импульсов, их частоты, скважности и максимального напряжения.

Можно на общий каркас намотать две катушки, одну бифилярную, а вторую обычную. Если их соединить последовательно, то в области бифилярной катушки один и тот же ток будет создавать между витками области с повышенным давлением эфира, а между витками обычной катушки давление эфира будет пониженным относительно среднего давления эфира. В итоге в такой конструкции появится сила, направленная от бифилярной катушки к катушке обычной, что заставит всю конструкцию перемещаться в пространстве. Вот вам и безопорное движение.

Такая конструкция из бифилярной и обычной катушки может быть положена в основу детской игрушки. Например, можно на коромысле разместить две ракеты, внутри которых будут размещены бифилярная и простая катушка. Для питания таких игрушек можно использовать самые обычные батарейки. Но сам факт вращения таких ракет заставит детей задуматься о природе безопорного вращения, на такой простой игрушке вырастет поколение, свободное от догм, которые пока еще блокируют сознание взрослых. Всем новаторам, которые хотят, чтобы их идеи и изобретения получили широкое распространение наперекор противодействию разного рода академиков и чиновников, можно предложить реализовывать изобретения в виде детских игрушек. Правда при этом придется забыть о гонорарах и прибылях, но дети, повзрослев, сумеют превратить свои игрушки в устройства, с помощью которых они смогут реализовать мечту и планы изобретателя. Причем ждать реализации придется уже не 50 и более лет, а гораздо меньше. Дети растут быстро.

Бифилярная катушка представляет собой электромагнитную катушку , которая содержит две близко расположенных, параллельных обмотки. В технике слово бифиляр описывает проволоку, состоящую из двух нитей или прядей. Обычно он используется для обозначения специальных типов обмоточного провода для трансформаторов . Проволока может быть куплена в бифилярной форме, обычно в виде эмалированной проволоки разного цвета, склеенной вместе. Для трех нитей используется термин трехниточная катушка .

СОДЕРЖАНИЕ

  1. с параллельной обмоткой, с последовательным соединением
  2. с параллельной обмоткой, с параллельным подключением
  3. контрнамотка (серия)
  4. контрнамотка (параллельная)

Некоторые бифиляры имеют соседние катушки, в которых витки расположены так, что увеличивается разность потенциалов (т. Е. Ток течет в одном параллельном направлении). Другие намотаны так, что ток течет в противоположных направлениях. Следовательно, магнитное поле, создаваемое одной обмоткой, равно и противоположно полю, создаваемому другой, что приводит к нулевому чистому магнитному полю (то есть нейтрализует любые негативные эффекты в катушке). С точки зрения электричества это означает, что самоиндукция катушки равна нулю.

Бифилярная катушка (чаще называемая бифилярной обмоткой ) используется в современной электротехнике как средство создания проволочных резисторов с незначительной паразитной самоиндукцией. [1]


Другой тип бифилярной катушки используется в некоторых обмотках реле и трансформаторах, используемых для импульсного источника питания для подавления обратной ЭДС . В этом случае две катушки с проводами расположены близко друг к другу и намотаны параллельно, но электрически изолированы друг от друга. Первичная катушка приводится в действие реле, а вторичная катушка закорачивается внутри корпуса. Когда ток через первичную обмотку прерывается, как это происходит при выключении реле, большая часть магнитной энергии перехватывается вторичной обмоткой, которая преобразует ее в тепло.в своем внутреннем сопротивлении. Это только один из нескольких методов поглощения энергии первичной обмотки до того, как она может повредить устройство (обычно уязвимый полупроводник ), которое приводит в действие реле. Основным недостатком этого метода является то, что он значительно увеличивает время переключения реле.

Бифилярные катушки создают индуктивность в синфазном режиме, но не создают индуктивности в дифференциальном режиме. Катушки в такой комбинации широко используются для исключения входа или выхода синфазных сигналов из электронных сигнальных цепей. Такое расположение используется в передающих и приемных магнитных устройствах кабелей Ethernet [2] и заметно в виде ферритовой бусины, прикрепленной к внешней стороне USB, источника питания портативного компьютера и кабелей HDMI.

Применение катушки Тесла

Не так давно в ассортименте различных магазинов появились так называемые плазменные лампы, испускающие молнии по поверхности стеклянного шара. Эти светильники быстро обрели популярность, но мало кто знает, что эти приборы изобрёл Никола Тесла в 1910-х годах прошлого века. Для начала необходимо разобраться с внутренним устройством этого удивительного изобретения. На самом деле это обычный трансформатор особого типа. Он использует в своей работе резонанс, возникающий в так называемых стоячих магнитных волнах. На первичной обмотке совсем немного витков, он генерирует колеблющиеся искры, собирая энергию в конденсатор, а поэтому искрение происходит в определенный период времени. Вторичная обмотка работает на базе прямоточной катушки из проводов. Частота колебания пары контуров должна совпасть, что приведёт к появлению крайне высокого переменного тока большой частоты между двумя концами катушки на вторичной обмотке. Это и вызывает визуализацию в виде тех самых фиолетовых молний.

Трансформатор Теслы

Резонансный трансформатор часто сравнивают с обычным маятником, где частота и амплитуда будут напрямую зависимы от того, с каким усилием толкается вся система. Раскачку можно делать при наличии свободных колебаний, что многократно повышает длину хода, а также увеличивает время полного угасания. С катушкой здесь происходит то же самое. Качается вторичная обмотка, а раскачивает её генератор. Синхронизация обеспечивается первичным контуром и генератором одновременно, что позволяет точно настроить систему в зависимости от поставленной задачи. В данный момент большинство людей знает это только в виде игрушки. Но на самом деле, эта система имеет реальное применение.

Использование катушки Тесла в реальности

Выходные значения напряжения часто может достигать невероятных значений в несколько миллионов вольт. Это уникальное явление в мире электричества, ведь подобные высокие токи редко характеризуются столь длительными волнами. Электрическая прочность воздушного пространства пробивается на огромное расстояние стабильными разрядами, а при большой мощности генератора длина может достигать многих метров. Подобные демонстрационные комнаты с этим чудом физики нашей планеты часто устанавливаются во многих университетах мира. Эти явления нашли отображение в знаменитой игрушке. Когда мы прикасаемся к шару, то молнии тянутся к нашим рукам, как к объекту со сравнительно большой проводимостью. Наша кровь и прочие жидкости организма переполнены солями и металлами, что делает нас отличным проводником.

Лампа с катушкой Теслы

Ещё в начале прошлого века данная схема использовалась для передачи сигналов на огромные расстояния, ведь у разрядов имеется также невидимая часть. Люди стали пытаться использовать их для передачи радиоволн на небольшие расстояния для передачи дистанционного управления, но такое применение было слишком опасным для здоровья людей. Затем проводились многочисленные опыты в сфере медицины. Так называемая дарсонвализация используется до сих пор, а сами приборы являются ничем иным, как генератором Тесла в самом маленьком размере. Ток щекочет кожу, но не проникает глубоко в тело. Тонизирующий эффект от такой обработки быстро нашёл применение в реальности, он используется для лечения кожных заболеваний, стимулирует рост волос, позволяет шлифовать шрамы, уменьшая размеры узелков.

Дарсонвализация

Именно данный тип генераторов поджигает газоразрядные лампы. Вакуумные системы тестируются при помощи этих лучей на наличие трещин в корпусах. Молния обязательно будет тянуться в сторону дефекта.

Опасны ли лампы Тесла для людей?

Можно однозначно говорить, что опасность имеется, поэтому нужно соблюдать прилагаемую инструкцию на 100%. Нельзя браться за руки и трогать стекло лампы, а также пытаться прикасаться к шару мокрыми руками. Особенно мы настоятельно не рекомендуем изготавливать подобные схемы без должного опыта в домашних условиях. Вы можете вывести из строя многочисленные электроприборы в вашем доме, сжечь проводку. Но это не самые худшие последствия. Трансформаторы Тесла с напряжением в миллионы вольт при ошибке способны убить человека одним касанием. Эффект схож с попаданием молнии. Поэтому будьте крайне осторожны, особенно берегите детей. До 12 лет покупка подобных ламп настоятельно не рекомендуется. Также покупайте эти приборы только от известных производителей. Копии от китайских безымянных компаний часто бьют током до такой степени сильно, что на руках могут загораться волосы и рукава одежды, а также оплавляются ногти. Игрушка может принести большие неприятности, будьте бдительны.

Бифилярная катушка представляет собой электромагнитную катушку , которая содержит две близко расположенных, параллельных обмотки. В технике слово бифиляр описывает проволоку, состоящую из двух нитей или прядей. Обычно он используется для обозначения специальных типов обмоточного провода для трансформаторов . Проволока может быть куплена в бифилярной форме, обычно в виде эмалированной проволоки разного цвета, склеенной вместе. Для трех нитей используется термин трехниточная катушка .

СОДЕРЖАНИЕ

  1. с параллельной обмоткой, с последовательным соединением
  2. с параллельной обмоткой, с параллельным подключением
  3. контрнамотка (серия)
  4. контрнамотка (параллельная)

Некоторые бифиляры имеют соседние катушки, в которых витки расположены так, что увеличивается разность потенциалов (т. Е. Ток течет в одном параллельном направлении). Другие намотаны так, что ток течет в противоположных направлениях. Следовательно, магнитное поле, создаваемое одной обмоткой, равно и противоположно полю, создаваемому другой, что приводит к нулевому чистому магнитному полю (то есть нейтрализует любые негативные эффекты в катушке). С точки зрения электричества это означает, что самоиндукция катушки равна нулю.

Бифилярная катушка (чаще называемая бифилярной обмоткой ) используется в современной электротехнике как средство создания проволочных резисторов с незначительной паразитной самоиндукцией. [1]


Другой тип бифилярной катушки используется в некоторых обмотках реле и трансформаторах, используемых для импульсного источника питания для подавления обратной ЭДС . В этом случае две катушки с проводами расположены близко друг к другу и намотаны параллельно, но электрически изолированы друг от друга. Первичная катушка приводится в действие реле, а вторичная катушка закорачивается внутри корпуса. Когда ток через первичную обмотку прерывается, как это происходит при выключении реле, большая часть магнитной энергии перехватывается вторичной обмоткой, которая преобразует ее в тепло.в своем внутреннем сопротивлении. Это только один из нескольких методов поглощения энергии первичной обмотки до того, как она может повредить устройство (обычно уязвимый полупроводник ), которое приводит в действие реле. Основным недостатком этого метода является то, что он значительно увеличивает время переключения реле.

Бифилярные катушки создают индуктивность в синфазном режиме, но не создают индуктивности в дифференциальном режиме. Катушки в такой комбинации широко используются для исключения входа или выхода синфазных сигналов из электронных сигнальных цепей. Такое расположение используется в передающих и приемных магнитных устройствах кабелей Ethernet [2] и заметно в виде ферритовой бусины, прикрепленной к внешней стороне USB, источника питания портативного компьютера и кабелей HDMI.

Читайте также: