Какие двигатели работают за счет энергии воздуха или газа

Обновлено: 05.07.2024

Воздушно-реактивный двигатель (ВРД) — тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается и, расширяясь, истекает из двигателя с большой скоростью, создавая реактивную тягу.

Воздушно-реактивные двигатели используются, как правило, для приведения в движение аппаратов, предназначенных для полётов в атмосфере.

Содержание

История

История воздушно-реактивных двигателей неразрывно связана с историей авиации. Прогресс в авиации на всём протяжении её существования обеспечивался, главным образом, прогрессом авиационных двигателей, а всё возраставшие требования, предъявляемые авиацией к двигателям, являлись мощным стимулятором развития авиационного двигателестроения.

Первый патент на газотурбинный двигатель был выдан англичанину Джону Барберу в 1791 году. [источник не указан 399 дней] Первые проекты самолётов с воздушно-реактивным двигателем были созданы в 60-е годы XIX века П. Маффиотти (Испания), Ш. де Луврье (Франция) и Н. А. Телешовым (Россия) [1] . В 1913 году француз Рене Лорен получил патент на прямоточный воздушно-реактивный двигатель. [источник не указан 399 дней]



Первым самолётом, поднявшимся в небо с турбореактивным двигателем (ТРД) HeS 3 конструкции фон Охайна, был He 178 [источник не указан 399 дней] (фирма Хейнкель Германия), управляемый лётчиком-испытателем флюг-капитаном Эрихом Варзицем (27 августа 1939 года). Этот самолёт превосходил по скорости (700 км/ч) все поршневые истребители своего времени, максимальная скорость которых не превышала 650 км/ч, [источник не указан 399 дней] но при этом был менее экономичен, и вследствие этого имел меньший радиус действия. К тому же у него были бо́льшие скорости взлёта и посадки, чем у поршневых самолётов, из-за чего ему требовалась более длинная взлётно-посадочная полоса с качественным покрытием.

Впервые в СССР проект реального истребителя с ВРД разработанным А. М. Люлькой, в марте 1943 года предложил начальник ОКБ-301 М. И. Гудков. Самолёт назывался Гу-ВРД [2] . Проект был отвергнут экспертами, главным образом, в связи с неверием в актуальность и преимущества ВРД в сравнении с поршневыми авиадвигателями.



В послевоенные годы реактивное двигателестроение открыло новые возможности в авиации: полёты на скоростях, превышающих скорость звука, и создание самолётов с грузоподъёмностью, многократно превышающей грузоподъёмность поршневых самолётов.

Первым отечественным серийным реактивным самолётом был истребитель Як-15 (1946 г), разработанный в рекордные сроки на базе планера Як-3 и адаптации трофейного двигателя Jumo-004, выполненной в моторостроительном КБ В. Я. Климова под обозначением РД-10. [3]

Первым отечественным реактивным пассажирским авиалайнером был Ту-104 (1955 г), оборудованный двумя турбореактивными двигателями РД-3М-500 (АМ-3М-500), разработанными в КБ А. А. Микулина.

Запатентованный ещё в 1913 г, прямоточный воздушно-реактивный двигатель (ПВРД) привлекал конструкторов простотой своего устройства, но главное — своей потенциальной способностью работать на сверхзвуковых скоростях и в самых высоких, наиболее разреженных слоях атмосферы, то есть в условиях, в которых ВРД других типов неработоспособны или малоэффективны. В 1930-е годы с этим типом двигателей проводились эксперименты в США (Уильям Эвери), в СССР (Ф. А. Цандер, Б. С. Стечкин, Ю. А. Победоносцев).



В 1937 году французский конструктор Рене Ледюк получил заказ от правительства Франции на разработку экспериментального самолёта с ПВРД. Эта работа была прервана войной и возобновилась после её окончания. 19 ноября 1946 года состоялся первый в истории полёт аппарата с маршевым ПВРД . [5] Далее в течение десяти лет было изготовлено и испытано ещё несколько экспериментальных аппаратов этой серии, в том числе, пилотируемые, [6] [неавторитетный источник?] а в 1957 году правительство Франции отказалось от продолжения этих работ — бурно развивавшееся в то время направление ТРД представлялось более перспективным.





Пульсирующий воздушно-реактивный двигатель (ПуВРД) был изобретён в XIX веке шведским изобретателем Мартином Вибергом. [источник не указан 399 дней] Наиболее известным летательным аппаратом (и единственным серийным) c ПуВРД Argus As-014 производства фирмы Argus-Werken, явился немецкий самолёт-снаряд Фау-1. После войны исследования в области пульсирующих воздушно-реактивных двигателей продолжились во Франции (компания SNECMA) и в США (Pratt & Whitney, General Electric), кроме того, благодаря простоте и дешевизне, маленькие двигатели этого типа стали очень популярны среди авиамоделистов, и в любительской авиации, и появились коммерческие фирмы, производящие на продажу для этих целей ПуВРД и клапаны к ним (быстроизнашивающаяся запчасть). [9]

Общие принципы работы

Реактивная тяга

Воздушно-реактивный двигатель — реактивный двигатель, развивающий тягу за счёт реактивной струи рабочего тела, истекающего из сопла двигателя. С этой точки зрения ВРД подобен ракетному двигателю (РД), но отличается от последнего тем, что большую часть рабочего тела он забирает из окружающей среды — атмосферы, в том числе и кислород, используемый в ВРД в качестве окислителя. Благодаря этому ВРД обладает преимуществом в сравнении с ракетным двигателем при полётах в атмосфере. Если летательный аппарат, оборудованный ракетным двигателем должен транспортировать как горючее, так и окислитель, масса которого больше массы горючего в 2-8 раз, в зависимости от вида горючего, то аппарат, оснащённый ВРД должен иметь на борту только запас горючего.

Рабочее тело ВРД на выходе из сопла представляет собой смесь продуктов сгорания горючего с оставшимися после выгорания кислорода фракциями воздуха. Если для полного окисления 1 кг керосина (обычного горючего для ВРД) требуется около 3,4 кг чистого кислорода, то, учитывая, что атмосферный воздух содержит лишь 23 % кислорода по массе, для полного окисления этого горючего требуется 14,8 кг воздуха, и, следовательно, рабочее тело, как минимум, на 94 % своей массы состоит из исходного атмосферного воздуха. На практике в ВРД, как правило, имеет место избыток расхода воздуха (иногда — в несколько раз, по сравнению с минимально необходимым для полного окисления горючего), например, в турбореактивных двигателях массовый расход горючего составляет 1 % — 2 % от расхода воздуха. [10] Это позволяет при анализе работы ВРД, во многих случаях, без большого ущерба для точности, считать рабочее тело ВРД, как на выходе, так и на входе, одним и тем же веществом — атмосферным воздухом, а расход рабочего тела через любое сечение проточной части двигателя — одинаковым.

Динамику ВРД можно представить следующим образом: рабочее тело, поступает в двигатель со скоростью полёта, а покидает его со скоростью истечения реактивной струи из сопла. Из баланса импульса, получается простое выражение для реактивной тяги ВРД: [10]

P=G\cdot(c - v)

(1)

Где — сила тяги, — скорость полёта, — скорость истечения реактивной струи (относительно двигателя), — секундный расход массы рабочего тела через двигатель. Очевидно, ВРД эффективен (создаёт тягу) только в случае, когда скорость истечения рабочего тела из сопла двигателя превышает скорость полёта: .

Скорость истечения газа из сопла теплового реактивного двигателя зависит от химического состава рабочего тела, его абсолютной температуры на входе в сопло, и от степени расширения рабочего тела в сопле двигателя (отношения давления на входе в сопло к давлению на его срезе).

Химический состав рабочего тела для всех ВРД можно считать одинаковым, что же касается температуры, и степени расширения, которые достигаются рабочим телом в процессе работы двигателя — имеют место большие различия для разных типов ВРД и разных образцов ВРД одного типа.

С учётом вышесказанного можно сформулировать и главные недостатки ВРД в сравнении с РД:

  • ВРД работоспособен только в атмосфере, а РД — в любой среде и в пустоте.
  • ВРД эффективен только до некоторой, специфической для данного двигателя, предельной скорости полёта, а тяга РД не зависит от скорости полёта.
  • ВРД значительно уступает ракетному двигателю в удельной тяге по массе — отношении тяги двигателя к его массе. Например, для ТРД АЛ-31ФП этот показатель равен 8.22, а для ЖРДНК-33 — 128. Это означает, что при одной и той же тяге ракетный двигатель в несколько раз (иногда, более чем в десять раз) легче ВРД. Благодаря этому РД успешно конкурируют с ВРД в нише скоростных крылатых ракет относительно небольшого радиуса действия — ЗУР, воздух-воздух, воздух-поверхность, для которых необходимость иметь на борту запас окислителя компенсируется меньшей массой двигателя.

Термодинамические свойства

Термодинамика процесса превращения тепла в работу для ПВРД и ТРД описывается циклом Брайтона, а для ПуВРД — циклом Хамфри. В обоих случаях полезная работа, за счёт которой формируется реактивная струя, выполняется в ходе адиабатического расширения рабочего тела в сопле до уравнивания его статического давления с забортным, атмосферным. Таким образом, для ВРД обязательно условие: давление рабочего тела перед началом фазы расширения должно превышать атмосферное, и чем больше — тем больше полезная работа термодинамического цикла, и выше КПД двигателя. Но в окружающей среде, из которой забирается рабочее тело, оно находится при атмосферном давлении. Следовательно, чтобы ВРД мог работать, необходимо тем или иным способом повысить давление рабочего тела в двигателе по отношению к атмосферному. Основные типы ВРД (прямоточный, пульсирующий и турбореактивный) различаются, в первую очередь, способом, которым достигается необходимое повышение давления.

Эффективность

Эффективность ВРД определяют несколько КПД или коэффициентов полезного действия.

 \eta_e = \frac<\left|Q_1\right| - \left|Q_2\right|></p>
<p>Эффективность ВРД как теплового двигателя определяет эффективный КПД двигателя: <br /> <\left|Q_1\right|>
(2)
где Q1 — количество теплоты отданное нагревателем,
Q2 — количество теплоты полученное холодильником.



\frac <c></p>
<p>Зависимость полётного КПД от отношения

\eta_n=\frac<2></p>
<p>Эффективность ВРД как движителя определяет полётный или тяговый КПД: >
(3)

Сравнивая формулы (1) и (3) можно прийти к выводу, что чем выше разница между скоростью истечения газов из сопла и скоростью полета, тем выше тяга двигателя и тем ниже полетный КПД. При равенстве скоростей полета и истечения газов из сопла полетный КПД будет равен 1, то есть 100 %, но тяга двигателя будет равна 0. По этой причине проектирование ВРД является компромиссом между создаваемой им тягой и его полетным КПД.

 \eta_o = \eta_n \cdot \eta_e

Общий или полный КПД ВРД является произведением двух приведенных выше КПД: (4)

Воздушно-реактивные двигатели можно разбить на две основные группы. ВРД прямой реакции, в которых тяга создается исключительно за счёт реактивной струи истекающей из сопла. И ВРД непрямой реакции, в которых тяга кроме или вместо реактивной струи создается посредством использования специального движителя, например пропеллера или несущего винта вертолёта. Применяется также классификация по признаку наличия механического воздушного компрессора в тракте двигателя: в этом случае ВРД подразделяются на бескомпрессорные (ПВРД с его вариантами, ПуВРД с его вариантами) — и компрессорные, где компрессор приводится от газовой турбины — ТРД, ТРДД, ТВД с их вариантами, а также мотокомпрессорный воздушно-реактивный двигатель, в котором компрессор приводится не от турбины, а от отдельного двигателя внутреннего сгорания (с воздушным винтом или без него).

Прямоточный воздушно-реактивный двигатель



  • Воздух, поступая со скоростью полёта во входное устройство двигателя, затормаживается и сжимается, на входе в камеру сгорания давление рабочего тела достигает максимального значения на всём протяжении проточной части двигателя.
  • Сжатый воздух в камере сгорания нагревается за счёт окисления подаваемого в неё топлива, внутренняя энергия рабочего тела при этом возрастает.
  • Расширяясь в сопле, рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создаёт реактивную тягу.



Дозвуковые прямоточные двигатели

Дозвуковые ПВРД предназначены для полётов на скоростях с числом Маха от 0,5 до 1. Торможение и сжатие воздуха в этих двигателях происходит в расширяющемся канале входного устройства — диффузоре.

Из-за низкой степени повышения давления при торможении воздуха на дозвуковых скоростях (максимально — 1,9 при М=1) эти двигатели имеют очень низкий термический КПД (16,7% при М=1 в идеальном процессе, без учёта потерь), вследствие чего они оказались неконкурентоспособными в сравнении с авиадвигателями других типов и в настоящее время серийно не выпускаются.

Сверхзвуковые прямоточные двигатели

СПВРД предназначены для полётов в диапазоне 1-5 Махов. Торможение сверхзвукового газового потока происходит всегда разрывно (скачкообразно) с образованием ударной волны, называемой также скачком уплотнения. Чем интенсивнее скачок уплотнения, то есть чем больше изменение скорости потока на его фронте, тем больше потери давления, которые могут превышать 50 %.



Беспилотный разведчик Lockheed D-21B (США). ПВРД с осесимметричным входным устройством с центральным телом.

Потери давления удаётся минимизировать за счёт организации сжатия не в одном, а в нескольких последовательных скачках уплотнения меньшей интенсивности, после каждого из которых скорость потока снижается. В последнем скачке скорость становится дозвуковой и дальнейшее торможение и сжатие воздуха происходит непрерывно в расширяющемся канале диффузора.

Фактором, ограничивающим рабочие скорости СПВРД сверху, является температура заторможенного воздуха, которая при M>5 превышает 1500 °C, и существенный дополнительный нагрев рабочего тела в камере сгорания становится проблематичным из-за ограничения жаропрочности конструкционных матриалов.

Гиперзвуковой ПВРД



Гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД, англ. Scramjet ) — ПВРД , работающий на скоростях полёта свыше пяти Махов и предназначенный для полётов в стратосфере. Возможное назначение летательного аппарата с гиперзвуковым ПВРД — низшая ступень многоразового носителя космических аппаратов.

Теоретически ГПВРД позволяет добиться более высоких полётных скоростей, по сравнению с СПВРД, за счёт того, что входной поток воздуха в ГПВРД тормозится лишь частично, так что течение рабочего тела на протяжении всей проточной части двигателя остаётся сверхзвуковым. При этом поток сохраняет бо́льшую часть своей начальной кинетической энергии, а повышение его температуры при торможении и сжатии относительно невелико. Это позволяет значительно разогреть рабочее тело, сжигая горючее в сверхзвуковом потоке, и, расширяясь, оно истекает из сопла со скоростью, превышающей скорость полёта.

Ядерный прямоточный двигатель

Во второй половине 50-х годов, в эпоху холодной войны, в США и СССР разрабатывались проекты ПВРД с ядерным реактором. Источником энергии этих двигателей является не химическая реакция горения топлива, а тепло, вырабатываемое ядерным реактором, размещённым на месте камеры сгорания. Воздух из входного устройства в таком ПВРД проходит через активную зону реактора, охлаждает его и нагревается сам до температуры около 3000 К [источник не указан 399 дней] , а затем истекает из сопла со скоростью, сравнимой со скоростями истечения для самых совершенных жидкостных ракетных двигателей. [источник не указан 399 дней]

Задание 1. Какой из перечисленных двигателей не относится к вторичным двигателям?

1. Паровая турбина

2. Пневматический двигатель

4. Паровая машина

5. Гидравлический двигатель

Задание 2. Какие из пневматических и гидравлических двигателей по принципу действия подобны паровой машине?

Задание 3. В каких двигателях рабочий орган совершает возвратно-поступательное движение?

1. Ветряное колесо

2. Водяное колесо (гидротурбина)

3. Паровая турбина

4. Пневматический поршневой двигатель

5. Паровая машина

6. Гидравлический цилиндрический двигатель

Задание 4. Какие двигатели работают за счёт энергии воздуха или газа?

1. Водяное колесо

2. Воздушная крыльчатка

4. Паровая турбина

6. Паровая машина

Задание 5. Какой модернизированный двигатель можно было бы установить на современную автомашину?

1. Водяное колесо

2. Воздушная крыльчатка

4. Паровая турбина

Задание 6. Какими бывают гидромоторы?

1. Роторные гидромоторы

2. Шестерённые гидромоторы

3. Радиально-поршневые гидромоторы

4. Пластинчатые гидромоторы

5. Статорные гидромоторы​

+

2 Смотреть ответы Добавь ответ +10 баллов

АВИАЦИО́ННЫЙ ДВИ́ГАТЕЛЬ , агрегат силовой установки (СУ) летательного аппарата (ЛА), который служит для создания потенциальной энергии и трансформации её в кинетическую энергию движения ЛА (самолёт, вертолёт, крылатая ракета, дирижабль и т.п.). В зависимости от принципа действия авиационные двигатели подразделяют на поршневые двигатели внутреннего сгорания, реактивные двигатели , ракетные двигатели , паровые двигатели, ядерные, электрические двигатели. Основные требования к авиационным двигателям: высокие надёжность, ресурс работы и топливная экономичность (требования по удельному расходу топлива), тяговооружённость, малые масса, размеры и форма при необходимых тяге или мощности. Состав СУ зависит от типа двигателя и типа ЛА (винтовой или реактивный, дозвуковой или сверхзвуковой) и включает в себя входные ( воздухозаборник и средства его регулирования, защиту от обледенения и пыли) и выходные устройства (реактивное сопло, шумоглушитель, реверсивное устройство), канал воздуховода, газогенератор (компрессор, камера сгорания, турбина), форсажную камеру сгорания, движитель (винт), топливную систему (топливные баки, насосы, подсиcтему заправки, заправки топливом в полёте, аварийного слива топлива в полёте и т.д.), масляную систему, систему пожаротушения, узлы крепления и гондолу размещения (обтекаемая оболочка) и др.

Долго обсуждалось, что лучше для вашего двигателя - нагнетатели или турбокомпрессоры? Что добавляет больше энергии? И что более надежно?

Разные производители могут комплектовать свою продукцию различными системами увеличения мощности, - нагнетателями, турбокомпрессорами, двойными турбокомпрессорами или последовательными нагнетателями. В поисках большего количества лошадиных сил, установка таких систем, является одним из самых быстрых способов увеличить мощность вашего двигателя. Так, какой же из них выбрать?

Нагнетатель

Идея нагнетателя проста. Воздушный компрессор с ременным приводом прикреплен к аксессуарам двигателя и доставляет большее количество воздуха в двигатель. Звучит достаточно просто, но все немного сложнее.

Нагнетатели или приводные компрессоры бывают трех типов, - роторные, винтовые и центробежные.

Роторные и винтовые нагнетатели - заменяют существующий впускной коллектор, поэтому они не создают сложностей при установке, имеют компактные размеры и занимают меньшее пространство. Проблема с такими установками заключается в том, что они менее производительны.

Центробежный тип является самым популярным, конструкция очень схожа с турбокомпрессором, и в отличии от роторных и винтовых типов, не заменяет впускной коллектор.

Нагнетатель Плюсы:

1. Простота установки

2. Ременный привод

3. Никаких изменений в выпускной системе

Нагнетатель Минусы:

1. На ременном приводе теряется часть мощности (ремень может проскальзывать, визжать или даже лопнуть). Запасные ремни могут быть достаточно дорогими.

2. Ограничен, размерами шкивов, при изменениях уровней мощности

3. Центробежные тип - это в основном сделанные на заказ комплекты, которые требуют значительных вложений

Турбокомпрессоры

Турбины отличаются от нагнетателей тем, что они работают на выхлопных газах. Турбокомпрессор устанавливается на выпускном коллекторе, и когда выхлопные газы проходят через него, они вращают крыльчатку (турбину), которая соединена через вал соседней крыльчаткой, сжимающей воздух. По этой причине турбокомпрессоры сильно перегреваются и нагревают сжатый воздух, делая его не таким плотным.

Турбина также может потребовать подключения к промежуточному охладителю - интеркулеру (не обязательно, но рекомендуется). Турбины также требуют постоянной смазки, а иногда даже используется принудительное охлаждение, которое должны быть подключено к единой системе, что может быть затруднительно.

Турбокомпрессоры Плюсы:

2. Форсирование (увеличение мощности) двигателя, можно менять вручную или при помощи электроники, оставляя неограниченный потенциал

3. Неограниченные варианты размеров и конфигураций

Турбокомпрессоры Минусы:

2. Дорогое техническое обслуживание

3. Из-за большого нагрева, высокая вероятность закоксовывания смазки, что может привести к преждевременному износу ( об этом дополнительно здесь )

4. Чтобы добавить турбину, выхлопная система должна быть изменена

И нагнетатели , и турбины , - значительно увеличивают мощность двигателей.

Что лучше, нагнетатель или турбокомпрессор?

При добавлении принудительного наддува в автомобиль, оба варианта требуют модернизации от компьютера, до топливной системы и сборочных сторон двигателя. Турбокомпрессор требует замены выпускного коллектора и трубопроводов. Нагнетатель требует замены впускного коллектора и трубопроводов промежуточного охладителя во всем моторном отсеке.

В конечном счете, выбор за вами. Если у вашего автомобиля действительно хорошая выхлопная система, а вы хотите получить гораздо больше энергии, рекомендуется использовать комплект нагнетателя.

Если вы собираете проектный автомобиль и двигатель, добавление турбокомпрессора было бы идеальным, потому что двигатель может быть построен с более низкой степенью сжатия, а изготовление трубопроводов и масляных линий может быть легко добавлено к двигателю.

Несколько лет назад мир облетела новость о том, что индийская компания Tata собирается запустить в серию автомобиль, работающий на сжатом воздухе. Планы так и остались планами, но пневматические автомобили явно стали трендом: каждый год появляется несколько вполне жизнеспособных проектов, а компания Peugeot в 2016 году планировала поставить на конвейер воздушный гибрид. Почему же пневмокары внезапно вошли в моду?

Автомобили на сжатом воздухе: плюсы и минусы


Плюсы: отсутствие вредных выбросов, возможность заправки автомобиля в домашних условиях, невысокая стоимость ввиду простоты конструкции двигателя, возможность применения рекуператора энергии (например, сжатия и накопления дополнительного воздуха за счет торможения автомобиля). Минусы: низкие КПД (5−7%) и плотность энергии; необходимость во внешнем теплообменнике, поскольку при уменьшении давления воздуха двигатель сильно переохлаждается; низкие эксплуатационные показатели пневмоавтомобилей.

Преимущества воздуха

Более распространена мембранная схема, где роль цилиндра выполняет гибкая мембрана, к которой точно так же прикреплен шток с пружиной. Ее преимущество заключается в том, что не нужна столь высокая точность посадки подвижных элементов, не требуются смазочные материалы, а герметичность рабочей камеры повышается. Существуют также роторные (пластинчатые) пневмодвигатели — аналоги ДВС Ванкеля.


Крошечный трехместный пневмоавтомобиль французской MDI был представлен широкой публике на Женевском автосалоне 2009 года. Он имеет право передвигаться по выделенным велодорожкам и не требует наличия водительских прав. Пожалуй, самый перспективный пневмокар.


Пневматика XXI века

Актуальность экологических проблем XXI века заставила инженеров вернуться к давно забытой идее использования пневмоцилиндра в качестве двигателя для дорожного транспортного средства. По сути, пневмоавтомобиль экологичнее даже электромобиля, элементы конструкции которого содержат вредные для окружающей среды вещества. В пневмоцилиндре же — воздух и ничего кроме воздуха.

Поэтому основной инженерной задачей было приведение пневмокара к виду, в котором он мог бы конкурировать с электромобилями по эксплуатационным характеристикам и стоимости. Подводных камней в этом деле множество. Например, проблема дегидратации воздуха. Если в сжатом воздухе будет хотя бы капля жидкости, то из-за сильного охлаждения при расширении рабочего тела она превратится в лед, и двигатель просто заглохнет (или даже потребует ремонта). Обычный летний воздух содержит примерно 10 г жидкости на 1 м 3 , и при наполнении одного баллона нужно затратить дополнительную энергию (около 0,6 кВт•ч) на дегидратацию — причем эта энергия невосполнима. Данный фактор сводит на нет возможность качественной домашней заправки — оборудование для дегидратации невозможно установить и эксплуатировать в домашних условиях. И это лишь одна из проблем.

Тем не менее тема пневмоавтомобиля оказалась слишком привлекательной, чтобы о ней забыть.


Сразу в серию?


У AIRpod есть все шансы на серийное производство, поскольку в городах с развитой велоструктурой, например в Амстердаме, такие машинки могут быть востребованы. Одна заправка воздухом на специально оборудованной станции занимает около полутора минут, а стоимость передвижения составляет в итоге порядка 0,5 на 100 км — дешевле просто некуда. Тем не менее заявленный срок серийного производства (весна 2014 года) уже прошел, а воз и ныне там. Возможно, MDI AIRpod появится на улицах европейских городов в 2015-м.


Кроссовый мотоцикл, построенный австралийцем Дином Бенстедом на шасси Yamaha, способен разгоняться до 140 км/ч и безостановочно ехать в течение трех часов на скорости 60 км/ч. Воздушный двигатель системы Анжело ди Пьетро весит всего лишь 10 кг.

Изначально Tata собиралась поставить MiniCAT на конвейер в середине 2012 года и производить порядка 6000 единиц в год. Но обкатка продолжается, а серийное производство отложено до лучших времен. За время разработки концепт успел сменить имя (ранее он назывался OneCAT) и дизайн, так что какая его версия поступит в итоге в продажу, не знает никто. Кажется, даже представители Tata.

На двух колесах

Чем легче автомобиль на сжатом воздухе, тем он более эффективен в плане эксплуатационных и экономических показателей. Логичный вывод из этого утверждения — почему бы не сделать скутер или мотоцикл?


Но, к сожалению, O2 Pursuit остался лишь одноразовой игрушкой, хотя и был номинирован на престижную изобретательскую премию, учрежденную Джеймсом Дайсоном. Спустя два года идею Бенстеда подхватил другой австралиец, Дарби Бичено, который предложил создать по схожей схеме не мотоцикл, а сугубо городское транспортное средство, скутер. Его EcoMoto 2013 должен быть сделан из металла и бамбука (никакого пластика), но дальше рендеров и чертежей дело пока что не продвинулось.

Помимо Бенстеда и Бичено, схожую машину в 2010 году построил Эвин И Ян (его проект назывался Green Speed Air Motorcycle). Все три конструктора, к слову, были студентами Королевского технологического института Мельбурна, и потому их проекты схожи, используют один и тот же двигатель и. не имеют шанса на серию, оставаясь исследовательскими работами.


Читайте также: