Какой газ находится в лампочке

Обновлено: 05.07.2024

Автор: Евгений Живоглядов.
Дата публикации: 20 июня 2015 .
Категория: Статьи.

Устройство и назначение основных частей ламп накаливания

Разбирая строение лампы накаливания (рисунок 1, а) мы обнаруживаем, что основной частью ее конструкции является тело накала 3, которое под действием электрического тока накаливается вплоть до появления оптического излучения. На этом собственно и основан принцип действия лампы. Крепление тела накала внутри лампы осуществляется при помощи электродов 6, обычно удерживающих его концы. Через электроды также осуществляется подвод электрического тока к телу накала, то есть они являются еще внутренними звеньями выводов. При недостаточной устойчивости тела накала, используют дополнительные держатели 4. Держатели посредством впайки устанавливают на стеклянном стержне 5, именуемым штабиком, который имеет утолщение на конце. Штабик сопряжен со сложной стеклянной деталью – ножкой. Ножка, она изображена на рисунке 1, б, состоит из электродов 6, тарелочки 9, и штенгеля 10, представляющего собой полую трубочку через которую откачивается воздух из колбы лампы. Общее соединение между собой промежуточных выводов 8, штабика, тарелочки и штенгеля образует лопатку 7. Соединение производится путем расплавления стеклянных деталей, в процессе чего проделывается откачное отверстие 14 соединяющее внутреннюю полость откачной трубки с внутренней полостью колбы лампы. Для подвода электрического тока к нити накала через электроды 6 применяют промежуточные 8 и внешние выводы 11, соединяемые между собой электросваркой.

Рисунок 1. Устройство электрической лампы накаливания (а) и ее ножки (б)

Для изоляции тела накала, а также других частей лампочки от внешней среды, применяется стеклянная колба 1. Воздух из внутренней полости колбы откачивается, а вместо него закачивается инертный газ или смесь газов 2, после чего конец штенгеля нагревается и запаивается.

Для подвода к лампе электрического тока и ее крепления в электрическом патроне лампа оборудуется цоколем 13, крепление которого к горлу колбы 1 осуществляется при помощи цоколевочной мастики. На соответствующие места цоколя припаивают выводы лампы 12.

От того как расположено тело накала и какой оно формы зависит светораспределение лампы. Но касается это только ламп с прозрачными колбами. Если представить, что нить накала представляет собой равнояркий цилиндр и спроецировать исходящий от нее свет на плоскость перпендикулярную наибольшей поверхности светящей нити или спирали, то на ней окажется максимальная сила света. Поэтому для создания нужных направлений сил света, в различных конструкциях ламп, нитям накала придают определенную форму. Примеры форм нитей накала приведены на рисунке 2. Прямая неспирализированная нить в современных лампах накаливания почти не применяется. Связано это с тем, что с увеличением диаметра тела накала уменьшаются потери тепла через газ наполняющий лампу.

Рисунок 2. Конструкция тела накала:
а – высоковольтной проекционной лампы; б – низковольтной проекционной лампы; в – обеспечивающая получение равнояркого диска

Большое количество тел накала подразделяют на две группы. Первая группа включает в себя тела накала, применяемые в лампах общего назначения, конструкция которых изначально задумывалась как источник излучения с равномерным распределением силы света. Целью конструирования таких ламп является получение максимальной световой отдачи, что достигается путем уменьшения числа держателей, через которые происходит охлаждение нити. Ко второй группе относят так называемые плоские тела накала, которые выполняют либо в виде параллельно расположенных спиралей (в мощных высоковольтных лампах), либо в виде плоских спиралей (в маломощных лампах низкого напряжения). Первая конструкция выполняется с большим числом молибденовых держателей, которые крепятся специальными керамическими мостиками. Длинная нить накала размещается в виде корзиночки, тем самым достигается большая габаритная яркость. В лампах накаливания, предназначенных для оптических систем, тела накала должны быть компактными. Для этого тело накала свертывают в дужку, двойную или тройную спираль. На рисунке 3 приведены кривые силы света, создаваемые телами накала различных конструкций.

Рисунок 3. Кривые силы света ламп накаливания с различными телами накала:
а – в плоскости, перпендикулярной оси лампы; б – в плоскости, проходящей через ось лампы; 1 – кольцевая спираль; 2 – прямая биспираль; 3 – спираль, расположенная по поверхности цилиндра

Требуемые кривые силы света ламп накаливания можно получить применением специальных колб с отражающими или рассеивающими покрытиями. Использование отражающих покрытий на колбе соответствующей формы позволяет иметь значительное разнообразие кривых силы света. Лампы с отражающими покрытиями называют зеркальными (рисунок 4). При необходимости обеспечить особо точное светораспределение в зеркальных лампах применяют колбы, изготовленные методом прессования. Такие лампы называются лампами-фарами. В некоторых конструкциях ламп накаливания имеются встроенные в колбы металлические отражатели.

Рисунок 4. Зеркальные лампы накаливания

Применяемые в лампах накаливания материалы

Металлы

Основным элементом ламп накаливания является тело накала. Для изготовления тела накала наиболее целесообразно применять металлы и другие материалы с электронной проводимостью. При этом пропусканием электрического тока тело будет накаливаться до требуемой температуры. Материал тела накала должен удовлетворять ряду требований: иметь высокую температуру плавления, пластичность, позволяющую тянуть проволоку различного диаметра, в том числе весьма малого, низкую скорость испарения при рабочих температурах, обуславливающую получение высокого срока службы, и тому подобных. В таблице 1 приведены температуры плавления тугоплавких металлов. Наиболее тугоплавким металлом является вольфрам, что наряду с высокой пластичностью и низкой скоростью испарения обеспечило его широкое использование в качестве тела накала ламп накаливания.

Температура плавления металлов и их соединений

Скорость испарения вольфрама при температурах 2870 и 3270°С составляет 8,41×10 -10 и 9,95×10 -8 кг/(см²×с).

Из других материалов перспективным можно считать рений, температура плавления которого немного ниже, чем у вольфрама. Рений хорошо поддается механической обработке в нагретом состоянии, стоек к окислению, имеет меньшую скорость испарения, чем вольфрам. Имеются зарубежные публикации о получении ламп с вольфрамовой нитью с добавками рения, а также покрытия нити слоем рения. Из неметаллических соединений интерес представляет карбид тантала, скорость испарения которого на 20 – 30% ниже, чем у вольфрама. Препятствием к использованию карбидов, в частности карбида тантала, является их хрупкость.

В таблице 2 приведены основные физические свойства идеального тела накала, изготовленного из вольфрама.

Основные физические свойства вольфрамовой нити

Температура, К Скорость испарения, кг/(м²×с) Удельное электрическое сопротивление, 10 -6 Ом×см Яркость кд/м² Световая отдача, лм/Вт Цветовая температура, К
1000
1400
1800
2200
2600
3000
3400
5,32 × 10 -35
2,51 × 10 -23
8,81 × 10 -17
1,24 × 10 -12
8,41 × 10 -10
9,95 × 10 -8
3,47 × 10 -6
24,93
37,19
50,05
63,48
77,49
92,04
107,02
0,0012
1,04
51,2
640
3640
13260
36000
0,0007
0,09
1,19
5,52
14,34
27,25
43,20
1005
1418
1823
2238
2660
3092
3522

Важным свойством вольфрама является возможность получения его сплавов. Детали из них сохраняют устойчивую форму при высокой температуре. При нагреве вольфрамовой проволоки, в процессе термической обработки тела накала и последующих нагревах происходит изменение ее внутренней структуры, называемое термической рекристаллизацией. В зависимости от характера рекристаллизации тело накала может иметь большую или меньшую формоустойчивость. Влияние на характер рекристаллизации оказывают примеси и присадки, добавляемые в вольфрам в процессе его изготовления.

Добавка к вольфраму окиси тория ThO2 замедляет процесс его рекристаллизации и обеспечивает мелкокристаллическую структуру. Такой вольфрам является прочным при механических сотрясениях, однако он сильно провисает и поэтому не пригоден для изготовления тел накала в виде спиралей. Вольфрам с повышенным содержанием окиси тория используется для изготовления катодов газоразрядных ламп из-за его высокой эмиссионной способности.

Для изготовления спиралей применяют вольфрам с присадкой оксида кремния SiO2 вместе со щелочными металлами – калием и натрием, а также вольфрам, содержащий, кроме указанных, присадку оксида алюминия Al2O3. Последний дает наилучшие результаты при изготовлении биспиралей.

Электроды большинства ламп накаливания выполняют из чистого никеля. Выбор обусловлен хорошими вакуумными свойствами этого металла, выделяющего сорбированные в нем газы, высокими токопроводящими свойствами и свариваемостью с вольфрамом и другими материалами. Ковкость никеля позволяет заменять сварку с вольфрамом обжатием, обеспечивающим хорошую электро- и теплопроводность. В вакуумных лампах накаливания вместо никеля используют медь.

Держатели изготавливают как правило, из молибденовой проволоки, сохраняющей упругость при высокой температуре. Это позволяет поддерживать тело накала в растянутом состоянии даже после его расширения в результате нагрева. Молибден имеет температуру плавления 2890 К и температурный коэффициент линейного расширения (ТКЛР), в интервале от 300 до 800 К равный 55 × 10 -7 К -1 . Из молибдена делают также вводы в тугоплавкие стекла.

Выводы ламп накаливания изготавливают из медной проволоки, которую приваривают торцевой сваркой к вводам. У ламп накаливания малой мощности отдельные выводы отсутствуют, их роль выполняют удлиненные вводы, изготовленные из платинита. Для припаивания выводов к цоколю применяют оловянно-свинцовый припой марки ПОС-40.

Стекла

Штабики, тарелочки, штенгели, колбы и другие стеклянные детали, применяемые в одной и той же лампе накаливания, изготовляют из силикатного стекла с одинаковым температурным коэффициентом линейного расширения, что необходимо для обеспечения герметичности мест сварки этих деталей. Значения температурного коэффициента линейного расширения ламповых стекол должны обеспечивать получение согласованных спаев с металлами, используемыми для изготовления вводов. Наибольшее распространение получило стекло марки СЛ96-1 со значением температурного коэффициента, равным 96 × 10 -7 К -1 . Это стекло может работать при температурах от 200 до 473 К.

Одним из важных параметров стекла является интервал температур, в пределах которого оно сохраняет свариваемость. Для обеспечения свариваемости некоторые детали изготовляют из стекла марки СЛ93-1, отличающегося от стекла марки СЛ96-1 химическим составом и более широким интервалом температур, в котором оно сохраняет свариваемость. Стекло марки СЛ93-1 отличается повышенным содержанием окиси свинца. При необходимости уменьшения размеров колб применяют более тугоплавкие стекла (например, марки СЛ40-1), температурный коэффициент которых составляет 40 × 10 -7 К -1 . Эти стекла могут работать при температурах от 200 до 523 К. Наиболее высокую рабочую температуру имеет кварцевое стекло марки СЛ5-1, лампы накаливания из которого могут работать при 1000 К и более в течение нескольких сотен часов (температурный коэффициент линейного расширения кварцевого стекла 5,4 × 10 -7 К -1 ). Стекла перечисленных марок прозрачны для оптического излучения в интервале длинн волн от 300 нм до 2,5 – 3 мкм. Пропускание кварцевого стекла начинается от 220 нм.

Вводы

Вводы изготовляют из материала, который наряду с хорошей электропроводностью должен иметь тепловой коэффициент линейного расширения, обеспечивающий получение согласованных спаев с применяемыми для изготовления ламп накаливания стеклами. Согласованными называют спаи материалов, значения теплового коэффициента линейного расширения которых во всем интервале температур, то есть от минимальной до температуры отжига стекла, отличаются не более чем на 10 – 15%. При впае металла в стекло лучше, если тепловой коэффициент линейного расширения металла несколько ниже, чем у стекла. Тогда при остывании впая стекло обжимает металл. При отсутствии металла, обладающего требуемым значением теплового коэффициента линейного расширения, приходится изготовлять не согласованные впаи. В этом случае вакуумно-плотное соединение металла со стеклом во всем диапазоне температур, а также механическая прочность впая обеспечиваются специальной конструкцией.

Согласованный спай со стеклом марки СЛ96-1 получают при использовании платиновых вводов. Дороговизна этого металла привела к необходимости разработки заменителя, получившего название "платинит". Платинит представляет собой проволоку из железоникелевого сплава с температурным коэффициентом линейного расширения меньшим, чем у стекла. При наложении на такую проволоку слоя меди можно получить хорошо проводящую биметаллическую проволоку с большим температурным коэффициентом линейного расширения, зависящим от толщины слоя наложенного слоя меди и теплового коэффициента линейного расширения исходной проволоки. Очевидно, что такой способ согласования температурных коэффициентов линейного расширения позволяет осуществлять согласование в основном по диаметральному расширению, оставляя несогласованным температурный коэффициент продольного расширения. Для обеспечения лучшей вакуумной плотности спаев стекла марки СЛ96-1 с платинитом и усиления смачиваемости поверх слоя меди, окисленного по поверхности до закиси меди, проволока покрывается слоем буры (натриевая соль борной кислоты). Достаточно прочные впаи обеспечиваются при использовании платиновой проволоки диаметром до 0,8 мм.

Вакуумно-плотный впай в стекло СЛ40-1 получают при использовании молибденовой проволоки. Эта пара дает более согласованный впай, чем стекло марки СЛ96-1 с платинитом. Ограниченное применение этого впая связано с дороговизной исходных материалов.

Для получения вакуумно-плотных вводов в кварцевое стекло необходимы металлы с весьма малым тепловым коэффициентом линейного расширения, которых не существует. Поэтому необходимый результат получаю благодаря конструкции ввода. В качестве металла используют молибден, отличающийся хорошей смачиваемостью кварцевым стеклом. Для ламп накаливания в кварцевых колбах применяют простые фольговые вводы.

Наполнение ламп накаливания газом позволяет повысить рабочую температуру тела накала без уменьшения срока службы из-за снижения скорости распыления вольфрама в газовой среде по сравнению с распылением в вакууме. Скорость распыления снижается с ростом молекулярной массы и давления наполняющего газа. Давление наполняющих газов составляет около 8 × 104 Па. Какой газ для этого использовать?

Использование газовой среды приводит к появлению тепловых потерь из-за теплопроводности через газ и конвекции. Для снижения потерь выгодно заполнять лампы тяжелыми инертными газами или их смесями. К таким газам относятся получаемые из воздуха азот, аргон, криптон и ксенон. В таблице 3 приведены основные параметры инертных газов. Азот в чистом виде не применяют из-за больших потерь, связанных с его относительно высокой теплопроводностью.

Основные параметры инертных газов

Газ Молекулярная масса Потенциал ионизации, В Теплопроводность, 10 -2 Вт/(м×К)
Водород
Аргон
Криптон
Ксенон
28,01
39,94
83,70
131,30
15,80
15,69
13,94
12,08
2,38
1,62
0,80
0,50

Источник: Афанасьева Е. И., Скобелев В. М., "Источники света и пускорегулирующая аппаратура: Учебник для техникумов", 2-е издание переработанное – Москва: Энергоатомиздат, 1986 – 272с.


Лампа накаливания – это источник искусственного света, который в процессе работы выделяет много тепла. Внутри ее металлическая спираль, чаще всего из тугоплавкого вольфрама. Этот элемент помещен в колбу, которая заполнена инертным газом, реже – вакуумная. Подобное наполнение не дает окисляться металлу. Такие лампы популярны благодаря низкой цене.

Путь создания

История этих ламп длинная и тернистая, не один создатель принял участие в ее творении. Разделить процесс создания можно на такие этапы:

  1. Изобретение Лодыгина. Русский ученый придумал, как засветить угольный стержень в стеклянном сосуде без доступа воздуха. Проблема была в том, что нить стала быстро перегорать. Чуть позже именно он предложил заменить угольный стержень вольфрамовым.
  2. Вклад Томаса Эдисона. Ему удалось создать недорогую и относительно долговечную модель подобной лампы. Он наладил потоковое производство, изготовить лампу можно было в нужных объемах. Почти всю жизнь он совершенствовал лампу, применяя разные материалы для достижения лучшего эффекта.

Со временем лампы начали наполнять инертными газами, что в разы увеличивало срок эксплуатации.

Лампа накала

С момента появления она не очень сильно изменилась к содержанию ↑

Сфера использования

Не так давно лампы накаливания присутствовали в различных сферах жизни, в быту и на предприятиях. Это обуславливается простой их монтажа, эксплуатации и обслуживания. Используются в таких сферах:

  • Общего предназначения для внутреннего и наружного освещения в частных домах, квартирах, офисах.
  • Местного применения – для подсветки рабочих мест.
  • Также есть специальные автомобильные лампы накаливания.
  • Устанавливаются в поездах, на судах, и в самолетах.
  • Миниатюрные ЛН применяются в фонариках, шкалах приборов.
  • Сверхминиатюрные в отдельных медприборах, пультах управления.
  • Также есть коммутационные, маячные, кинопроекционные.

Важно! Во многих сферах сегодня используются экономичные лампы, но все же потребительский интерес применения ЛН не снижается.

Характеристики

Лампы накала обладают такими характеристиками:

  1. Разлет мощностей. Зависит от сферы использования, так для бытовых целей применяются лампы от 25 до 150 Ватт, для других – до 1000 Вт.
  2. Нить накаливается до 2000–2800 градусов.
  3. Напряжение – 220–330 В.
  4. Световая отдача – 9–19 Лм/1Вт.
  5. Размеры цоколя – Е 14, Е 27 и Е 40, что соответствует 14, 27 и 40 мм. Тип цоколя – резьбовой и штифтовой. Последний может быть одно- или двухконтактным.
  6. Ресурс функционирования – 1000 часов при оптимальных условиях.
  7. Выделяют в процессе горения много тепла, имеют чувствительность к частым выключениям.
  8. По цене они самые доступные из предложенных в магазинах ламп.
  9. Средний вес – 15 г.

Принцип действия

Суть работы всех ЛН в использовании принципа нагревания вещества при прохождении сквозь него тока. В этом случае повышается температура нити накала после замыкания электрической цепи. Как результат запускается эффект электромагнитного теплового излучения. Чтобы оно стало видимым для человека, температура нагревания должна превышать 570 ⁰C – это начало красного свечения.

Внутри лампы нить накаливания разогревается до 2000–2800 ⁰С. При разогревании до такой температуры на воздухе вольфрам превращается в оксид – на нем образуется белый налет, поэтому внутрь колбы закачиваются нейтральные газы. На заре развития данной технологи освещения в лампочке создавался вакуум, сейчас это практикуют только для изделий минимальной мощности. При закручивании в патрон цоколя лампы и замыкании цепи запускается процесс накаливания нити, и она дает свет.

Конструкция

Конструкция

Конструкция ламп накаливания

Устройство всех ЛН схоже, в них содержаться:

  1. Рабочая часть – нить из вольфрамовой проволоки, свернутая в спираль. Удельное сопротивление этого металла в 3 раза больше, чем у меди. Вольфрам используется, потому что он тугоплавкий и можно максимально уменьшить сечение нити. За счет этого повышается электрическое сопротивление. Питание спираль получает от электродов.
  2. Спираль удерживают элементы из молибдена. Он также тугоплавкий, имеет низкий коэффициент теплового расширения.
  3. Колба из стекла. Внутри ее инертный газ, что не дает сгореть нити накала. Именно поэтому такие лампы не вакуумные, именно газ создает давление внутри колбы.
  4. Электроды соединяются с контактными элементами цоколя с помощью медных проводников.
  5. Цоколь. Такой элемент есть во всех рассматриваемых лампочках, за исключением специальных автомобильных. Резьба на цоколе и его размер могут быть различными.

Цоколь

Самые привычные для нас лампочки с резьбовым цоколем, размеры их стандартизированы. Для моделей, что используются в бытовых условиях, востребованы Е 14, Е 27 и Е 40. Реже используются для таких источников света без резьбы, но они распространены в автомобильном деле.

Интересно! В Америке и Канаде используются другие стандарты цоколей по причине иного напряжения в сети. Для них привычные размеры резьбы в мм: 12, 17, 26 и 39. При отражении размера цоколя на лампочке перед цифрами стоит так же как и у нас литера Е.

Цоколи

Цоколи ламп накаливания

Маркировка

Разобраться в маркировке ламп накаливания несложно, основные обозначения, которые можно встретить:

Коэффициент полезного действия и долговечность

Существенные недостатки таких ламп – это небольшой срок эксплуатации и низкий коэффициент полезного действия. Под КПД подразумевается соотношение мощности и заметного человеку излучения. Как помним, нить разогревается до 2700 К, в этом случае ее КПД около 5%. Вся остальная энергия, которая, кстати, в полном объеме превращается в излучение, припадает на инфракрасный спектр, который невидим для человека. Мы воспринимаем его как тепло.

Теоретические повысить КПД до 20% можно, для этого следует увеличить температуру нити накала до 3400 К, получаемый свет в этом случае будет в 2 раза ярче, правда, срок эксплуатации уменьшается на 95%.

Если мощность снижать, то период эксплуатации ламп накаливания может увеличиваться в 5 и более раз. Уменьшение напряжения при этом снижает КПД, но использовать лампочку получиться в 1000 раз дольше. Этот эффект используется при создании надежного дежурного освещения. Конечно, это возможно, только если нет критических требований к освещенности.

Перегорание

Процесс перегорания лампы накаливания к содержанию ↑

Виды ламп и их функциональное назначение

Существует много ламп накаливания, классификация их происходит по функциональному назначению и конструкционным особенностям.

Общего, местного предназначения

Вплоть до 1970 года их называли нормально-осветительными. Эта группа является самой массовой среди обычных ЛН. Ранее успешно использовались как для общего, так и для декоративного освещения дома, в офисах, других учреждениях. На данный момент во многих странах, в том числе в России, их выпуск ограничивается.

Что касается лампочек местного назначения, то они по конструкции такие же, как и общего, но рассчитаны они на пониженное рабочее напряжение. Использоваться могут в ручных переносных светильниках, для освещения станков, верстаков и т. д.

Лампа

Лампа общего назначения

Декоративные

Основная их особенность – это фигурная колба, размеры ее могут быть очень разными, также как и расположение внутри нити накаливания. Подобные модели сегодня очень востребованы, но выполняют не так роль освещения, как декора, в особенности в винтажных или ретро дизайн-проектах. Внешний вид подобной лампы очень оригинален.

Декоративные лампы

Варианты исполнения декоративных ламп

Иллюминационные

Колба у них окрашена в разные цвета, в зависимости от целевого использования. Удобны для оснащения иллюминационных установок. Краска в основном наносится на колбу внутри, для этого применяются неорганические пигменты. Значительно реже такие лампы красят снаружи. Мощность их небольшая, варьируется в пределах 10–25 Вт. Необходимый эффект они дают только первое время, далее цвет их меняется, теряет яркость.

Лампа накала

Иллюминационная лампа может быть разной мощности

Сигнальные

Применялись в разных светосигнальных приборах. На данный момент из этой сферы их вытесняют светодиодные лампы.

Сигнальная лампа

Вариант исполнения сигнальной лампы

Зеркальные

Колба такой лампы имеет специфическую форму, внутри она покрыта тонким слоем алюминия. За счет этого создается зеркальный эффект, также есть прозрачная часть. Основная задача таких ламп – распределение светового потока с целью сосредоточения в пределах определенной зоны. Удобно их использовать в витринах магазинов, в торговых залах. Именно такие лампы используются для обогрева новорожденных птенцов и других животных.

Лампа накаливания

Зеркальная лампа накаливания

Транспортные

Эта группа очень обширная, используется в разных транспортных средствах, для фар или другой подсветки. Востребованы для:

  • Автомобилей.
  • Мотоциклов.
  • Тракторов.
  • Самолетов и вертолетов.
  • Речных и морских судов.

Такие лампы имеют ряд особенностей, среди них:

  1. Высокая прочность.
  2. Стойкость к воздействию вибрации.
  3. Специальные цоколи, за счет чего удается быстро менять вышедшую из строя лампу.
  4. Они рассчитаны на питание от электрической сети ТС.

Двухнитевые

Это подтип специальной лампы накаливания, которые используются в:

  • Автомобилях. Так, лампы для фар могут иметь 2 нити накала. Одна из них идет на ближний свет, вторая – на дальний. Аналогичная ситуация и для задних фонарей, только тут отдельные нити для габаритов и для стоп-сигналов.
  • Самолетах. В отдельных моделях в посадочно-рулежной фаре.
  • Ж/д светофорах. Тут двухнитевые лампы – это элемент безопасности и подстраховки, если перегорит одна, то вторая сможет продолжать подавать сигнал.

Важно! Есть и другие варианты ламп, например, имеющие специальный спектр излучения, нагревательные, проекционные и другие. Но сегодня они активно вытесняются другими типами лампочек.

Двухнитевая ЛН

Двухнитевая автомобильная лампа накаливания к содержанию ↑

Преимущества и недостатки

Самые популярные в мире лампы имеют как преимущества, так и много недостатков, особенно с развитием новых технологий освещения. Начать стоит с достоинств, конкретней:

  • Доступная цена. Это самый бюджетный вариант на данный момент. Правда, это касается только стоимости, но не счетов за электроэнергию.
  • Компактные размеры.
  • Практически не страдают от перепадов напряжения в сети.
  • Не требуется время для разогрева.
  • При функционировании на переменном токе мерцания невидимо.
  • Можно использовать электронные диммеры для контроля и экономии потребления электроэнергии.
  • Спектр отлично воспринимается человеческим глазом, тип его непрерывный.
  • Индекс цветопередачи на высоком уровне.
  • Можно использовать в любом температурном режиме, независимо от разновидности.
  • Большой разлет вольтажа, от долей до сотен Вольта.
  • Не требуют специальной утилизации, так как не содержат внутри токсических компонентов. То есть не несут вред людям и другим живым существам.
  • Не нужна дополнительная пускорегулирующая аппаратура, что в сравнении с современными источниками света большой плюс.
  • Во время работы не гудят и не создают радиопомех.
  • Нечувствительность к полярности – она все равно будет работать.
  • Создают минимальный уровень излучения УФ лучей, если сравнивать с другими современными лампочками.

Недостатки:

  1. Низкая световая отдача и непродолжительный период эксплуатации – это самые большие минуса лампочек накала.
  2. Зависимость качества световой отдачи от напряжения.
  3. Выработка огромного количества тепла.
  4. Потребляют много электроэнергии.
  5. Пожароопасность. В зависимости от мощности лампочки, поверхность вокруг нее нагревается вплоть до +330 ⁰C.
  6. Есть риск взрыва лампы, что приведет к травмированию.
  7. Хрупкость.

" onClick="this.select();">


1. Лампы накаливания.
Классическая лампочка накаливания выглядит как сферический стеклянный шар из силикатного стекла (колба), внутри лампы находится вольфрамовая нить, при этом в полости лампы создан вакуум.
Принцип работы сводится к тому, что при прохождении электрического тока электроны разогревают вольфрамовую спираль и возникает электромагнитное тепловое излучение с эффектом свечения.
Средний КПД у таких ламп составляет около 6-8% в частности, КПД зависит от длины волны выпускаемого света, а она — от температуры нити накаливания, которая ограничена у обычных ламп.
Недостатком данных ламп является затуманивание колбы вследствие оседания вольфрама, вырвавшегося с поверхности нити накаливания лампы при высоких температурах.
Значительная длина нити накаливания лампы усложняет задачу фокусировки пучка света отражателем фары, что ограничивает видимость на дороге.
Некоторые разновидности ламп накаливания выпускались со сдвоенно спиралью.Маркировка таких ламп производится с использованием индекса R2.
Обычные классические лампочки хоть и пользовались до недавнего времени достаточно широкой популярностью, но, к сожалению, совершенно не практичны. Сейчас уже и в автомагазине практически невозможно встретить в продаже обычных лампочек накаливания, на смену которым пришли галогеновые лампы.


2. Галогенные лампы.
Галогенные лампы решили часть проблем, связанных с обычными лампочками.
Форма лампы позволяет использовать более короткую нить накаливания, колба лампы изготовлена из кварцевого стекла.
Колба наполнена инертным газом с парами галогена(йод, бром и другие). Применение такого наполнителя позволяет осуществить физико-химическую реакцию возвращения молекул вольфрама обратно на нить накаливания галогенной лампы.
Поэтому стекло галогенных ламп не мутнеет из-за оседания вольфрама и пропускает через поверхность колбы бо́льшее количество фотонов света.Галогенные лампы позволили поддерживать более высокую температуру нити накаливания, что изменило длину волны испускаемого спектра и повысило эффективность ламп.
Стекло галогенной лампы нельзя трогать руками.
При касании мы всегда оставляем отпечатки, а с ними жир и грязь, что в свою очередь вызывает неравномерное распределение температуры по кварцевой колбе галогенной лампы. При нарушении температурного режима колба может треснуть, и лампа выйдет из строя.
На сегодняшний день галогенные лампы имеют наиболее широкое применение в автомобилях.


3. Газоразрядные лампы.
Газоразрядные лампы появились самыми последними — в середине 90-х годов.
На вид они не отличаются от галогенных ламп, но принцип их работы совершенно другой.
Колба заполнена газом (чаще всего — это ксенон)
Поэтому лампы называются ксеноновыми. В ксеноне создаётся электрическая дуга между электродами.
Цветовая температура — это характеристика источника света, определяющая ощущаемый глазом цвет. Каждому цвету соответствует своя температура, измеряемая в градусах Кельвина (далее — К).
Глаз человека лучше всего видит при дневном свете.
Цветовая температура показывает, как должен быть нагрет газ внутри колбы, чтобы лампа светила тем или иным цветом.
Как правило, производители предлагают ассортимент из трёх основных видов цветовых температур:
• 4300 Кельвинов — "Бело-молочный"
• 5000 Кельвинов — "Белый"
• 6000 Кельвинов — "Голубой кристалл".


Чем выше цветовая температура, тем больше лампа будет отдавать в голубой свет, а чем меньше — тем в жёлтый. Также чем выше температура ксенона, тем меньше яркость излучаемого света.
Штатный ксенон, который ставится непосредственно на заводе, имеет цветовую температуру 4300 К. При установке ксенона с цветовой температурой 5000 К потеря в яркости невелика. Поэтому многие устанавливают среднее по цвету — 5000 К.
При цвете свечения ксенона 6000 К показатель освещенности сильно падает, и в плохую погоду (дождь, снег, слякоть) освещения будет не хватать.
Минусами газоразрядных ксеноновых ламп является необходимость установки дополнительного оборудования, обеспечивающего подачу напряжения до 20000 Вольт, необходимого для создания электрической дуги.
И как ни странно, к минусам можно отнести слишком высокую интенсивность испускаемого света, которая отрицательно сказывается на безопасности дорожного движения.
Установка ксеноновых ламп должна производится в условиях автосервиса.
Колбу газоразрядных ламп также запрещено трогать руками.


Обладая рядом преимуществ перед галогеном, ксеноновые и светодиодные лампы завоевали большую популярность.
Главное преимущество ксеноновой (газоразрядной) лампы — её световой поток, который примерно в два-три раза мощнее, чем у галогенной.
Цветовая температура света ксеноновой лампы намного выше, чем у галогенной, в результате чего видимость намного лучше, чем при свете галогенных фар.


Другие приятные особенности ксенона — повышенный срок службы, до 2000-3000 часов против 400-1000 у галогеновой лампы. Это результат отсутствия в ксеноновой лампе хрупкой нити, чувствительной к тряске. Кроме того, в рабочем режиме ксенон потребляет гораздо меньший ток, что положительно сказывается на ресурсе генератора автомобиля.
Ксеноновая лампа нагревается на 40% меньше, чем галогеновая.
Дело в том, что КПД галогеновой лампы 30%, именно эти 30% и преобразуются в световую энергию, остальные 70% потребляемой энергии идут в тепло.
Ксеноновые лампы работают по совершенно другому принципу, и лишь небольшая часть энергии уходит в тепло. Так что ксенон холоднее галогена, поэтому опасность оплавления фары при работе ксеноновой лампы отсутствует.
Из недостатков ксеноновых фар можно выделить следующие:
• Дороговизна. Высокая стоимость лампы, кроме этого, в случае замены ксеноновых ламп нужно менять их в паре (со временем спектр излучения ксеноновой лампы изменяется).
• Для розжига ксеноновой лампы нужно подать на лампу напряжение около 25000 Вольт и поддерживать его на уровне 80 Вольт с частотой 300 Гц. Поэтому подключить лампу прямо к бортовой сети не получится, а значит, лампа нуждается в дополнительном блоке розжига.
• Задержка при включении (время на розжиг).


4. Светодиодный лампы.

Одним из последних новшеств в производстве автомобильных ламп являются светодиодные лампы. Светодиодные лампы постепенно завоёвывают авторитет, благодаря интенсивному яркому свету и малой потребляемой мощности.
Качество света фар, как известно, напрямую зависит от двух составляющих — самой оптики и применяемых ламп.
Преимущества светодиодных ламп:
• Низкое энергопотребление сильно уменьшает нагрузку на электросеть автомобиля.
• Большой срок службы, от 50000 часов.
• Высокая надёжность при ударах и вибрациях из-за отсутствия нити накала.
• Большой световой поток, от 1800 до 3600 Люмен.
• Цветовая температура схожа с цветом ксенона, то есть свет белый, а не жёлтый.

Примечание.

Видимое излучение оцениваемое по световому ощущению, которое оно производит на человеческий глаз, называется световым излучением, а мощность такого излучения — световым потоком. единица светового потока — Люмен (Лм).

Для примера световой поток различных источников света:

• Лампа накаливания 100 Вт — 1350 Лм
• Галогенная лампа накаливания 230 В 70 Вт — 1170 Лм
• Газоразрядная лампа 35 Вт ("автомобильный ксенон") — 3000-3400 Лм
• Светодиод 40-80 Вт — 6000 Лм
• Светодиодная лампа (цокольная) 4500 К, 10 Вт — 860 Лм
• Солнце — 3,63х10^28 Лм



Тонкости при установке светодиодов.

Если у автомобиля есть бортовая система самодиагностики, то установка светодиодов может активировать функцию предупреждения о перегоревших лампочках, так как бортовой компьютер увидит снижение потребляемого тока. Для того чтобы убрать этот сигнал, нужно подключить диагностический компьютер и внести корректировки. А можно просто не обращать внимание на предупреждения.
Замена в автомобиле ламп накаливания на светодиодные лампы позволит снизить нагрузку осветительных приборов на аккумулятор (АКБ) в среднем на 85%. Кроме того, можно сэкономить и на покупках самих лампочек, которые не нужно будет больше менять раз в год или пол года. Светодиоды значительно прочнее ламп накаливания.

Энергосберегающие лампы состоят из колбы, наполненной парами ртути и аргоном, и пускорегулирующего устройства (стартера). На внутреннюю поверхность колбы нанесено специальное вещество, называемое люминофор.

Какие типы энергосберегающих ламп существуют?

  • Светодиодные,
  • Галогенные,
  • Люминесцентные,
  • Диммируемые.

Сколько ртути в энергосберегающих лампах?

С лампами все проще: активной ртути в них нет, только ее пары. Тем не менее, в пересчете на чистое количество, средняя энергосберегающая лампа содержит 3—5 мг ртути. Такого количества достаточно, чтобы вызвать ухудшение самочувствия. В случае легкого отравления это будет слабость, головная боль и головокружение.

Чем лампа накаливания отличается от энергосберегающей?

Энергосберегающая лампа – это заполненная аргоном и парами ртути колба. . Лампа накаливания стоит дешево, быстро перегорает (максимальный срок службы составляет 1000 часов). Причина – перегорание тела накала (нити или спирали). Энергосберегающие источники света имеют высокую цену и такую же высокую долговечность.

Какой газ находится в обычной лампочки?

Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания.

Какой свет энергосберегающих ламп лучше?

Какие самые лучшие энергосберегающие лампы?

  • LIGHTSTAR E14, 13Вт 2700K;
  • UNIEL 2G7, PL, 11Вт 4000K;
  • OSRAM G23, TC-S, 11Вт 2700K;
  • Camelion G23, 11Вт 4200K;
  • ASD E27, A60, 15Вт 3000K.

Что будет если разбить энергосберегающую лампочку?

Что же делать если вы разбили энергосберегающую лампу? Наденьте влажную марлевую повязку и воспользуйтесь резиновыми перчатками, бумажными полотенцами, старой губкой, т. е всем тем, что не жалко потом выбросить вместе со стеклом. Не убирайте осколки с помощью пылесоса.

Что делать если разбилась энергосберегающая лампочка в квартире?

Если разбилась энергосберегающая лампочка в квартире, то нужно аккуратно собрать все ее осколки и поместить не в полиэтиленовый пакет, а в герметично закрывающуюся тару, например, в банку с закручивающейся крышкой.

Как понять есть ли ртуть в лампочке?

Но надо понимать, что ртуть в градуснике и лампочке разная. Если из разбитого термометра она высыпается блестящими шариками, то среди осколков лампочки вы их не обнаружите, потому что ртуть в ней содержится в виде паров, которых очень мало, около 5 мг (для сравнения — в градуснике это 2-3 грамма).

Почему лампы накаливания заменяют на энергосберегающие?

Главным преимуществом энергосберегающих ламп считается их высокая световая отдача, превышающая тот же показатель ламп накаливания в несколько раз.

Чем отличаются энергосберегающие лампы от обычных?

Энергосберегающие лампочки существенно отличаются от обычных. Главное отличие – расход энергии. . Более того, есть возможность выбора желаемого цвета, так как имеются энергосберегающие лампочки, дающие белый свет, холодный, теплый и другие цвета. Срок службы энергосберегающей лампочки намного выше.

В чем разница между энергосберегающей и светодиодной?

Основное отличие светодиодной лампы от энергосберегающей, в вопросе безопасности, заключается в отсутствие каких-либо вредных веществ. Более того, светодиодные лампочки могут производиться без использования стеклянной колбы, что значительно повышает механическую прочность конструкции.

Какой газ закачивают в лампы накаливания?

Хороший обогреватель, но плохой источник света. Чтобы увеличить КПД лампы накаливания, в колбу под давлением закачивают пары брома или йода, который позволяет увеличить температуру нити. Такие лампы называются галогенными.

Какой тип цоколя у обычной лампочки?

Обозначение Exx соответствует диаметру в миллиметрах, так, цоколь E27 имеет диаметр 27 мм. В большинстве стран, которые используют для бытового электроснабжения напряжение 230-240 В, наиболее распространены цоколи E40, E27 и E14 (E27 — стандартный бытовой цоколь советских и европейских лампочек 220 В).

Как работает лампа накаливания кратко?

Лампа накаливания — источник света, в котором свет испускает спираль, она же нить накаливания, она же тело накала, нагреваемое электрическим током до высокой температуры. . В любой лампе накаливания, что обычной, что ретро лампочке, используется эффект нагревания проводника при протекании через него электрического тока.

Конструкции современных ламп накаливания, предназначенных для различных целей, могут существенно отличаться от привычного нам бытового прототипа.

Все основные качества светильника напрямую связаны с типом и свойствами используемых в нём ламп. За полтора века своего существования семейство электроламп стало весьма обширным и разно- образным. Поэтому мы рассмотрим только те типы ламп, которые используются в бытовых светильниках достаточно часто.

Вот главные характеристики любой осветительной электролампы:

Светоотдача (световая эффективность) — измеряется в люмен/ватт (лм/Вт, lm/W) и показывает, сколько света лампа даёт на один затраченный ватт электрической мощности. Чем больше люмен, тем лучше; при равной мощности от лампы с большей светоотдачей вы получите больше света или столько же, но за меньшие деньги. К сожалению, на самой лампе светоотдача не указывается. Её можно узнать в справочниках или в сопроводительных документах на партию ламп в магазине.

Мощность — количество электроэнергии, потребляемое лампой за час, измеряется в ваттах (Вт, W). Маркировка для 60-ваттной лампы: 60 W и наносится на колбу или цоколь.

Напряжение — оно также указано на цоколе или колбе и должно быть почти равно напряжению питающего электричества. Наиболее часто встречаемая маркировка: 230—240 V. Лампа с такой маркировкой рассчитана на напряжение сети 220 вольт с небольшим запасом, чтобы во время кратковременных скачков напряжения лампа не перегорела.

Индекс цветопередачи (Ra) — за идеал принимается 100%, при таком значении цветопередача полная, то есть соответствует солнечному освещению.

ЛАМПЫ НАКАЛИВАНИЯ

Обыкновенная лампочка, несмотря на многие годы применения, до сих пор остаётся самым массовым источником света. Почти все остальные типы ламп имеют похожее устройство. Это не относится к светодиодам, но такие источники света из-за высокой цены пока не стали по-настоящему массовыми. На примере всем известной лампочки мы рассмотрим её устройство и устройство других ламп.

Стеклянная колба — в ней помещены все детали лампы, кроме цоколя.

Газ-наполнитель — необходим для замедления испарения раскалённого металла с поверхности спирали. Для этой цели используются аргон, криптон, азот.

Спираль — проволочка с высоким удельным сопротивлением и высокой тугоплавкостью. Чем выше максимально допустимая температура нагрева спирали, тем ярче светит лампа. В большинстве изделий применяется вольфрам, который позволяет нагреваться спирали до 2700оС.

Штенгель — деталь, которая держит спираль и не даёт ей деформироваться.

Вводы — проводники, передающие электрический ток к спирали.

Теплоотражатель — отражает часть тепла от цоколя.

Ножка — обеспечивает герметичность колбы в месте вводов.

Цоколь — с его помощью лампа закрепляется в электропатроне светильника.

Обычная лампа накаливания — самая массовая благодаря своей низкой цене, привычности, простоте схемы светильников, в которых она используется. Световая эффективность лампы с вольфрамовой спиралью равна примерно 12 лм/Вт. По сравнению с другими это неэффективный источник света. Бóльшая часть излучения спирали находится в невидимом инфракрасном (тепловом) спектре. Проще говоря, такие лампы гораздо больше греют, чем светят. Между прочим, некоторые умельцы используют их в качестве нагревателей для хранения овощей в ящике на балконе зимой, лампочки отлично справляются. Срок жизни обычных ламп накаливания около 1000 часов, причём из-за постепенного переноса материала нити в виде паров на колбу она мутнеет и со временем яркость существенно понижается. Индекс цветопередачи примерно равен 90%, в спектре свечения преобладают жёлтые тона, это напоминает солнечный свет, что многим нравится. Подавляющее большинство ламп выпускается с цоколями Е27 (обычные резьбовые с диаметром резьбы 27 мм) и миньон — Е14 (резьбовые с диаметром 14 мм). Встречаются и другие цоколи, но назвать их массовыми никак нельзя.

Мощность ламп может составлять от нескольких ватт до нескольких киловатт (промышленные), в быту используются лампы до 300 Вт.

Внешний вид колб очень разнообразен, в подтверждение — далеко не полный список:

— криптон матовый (грибок);

— криптон опаловый (грибок);

— криптон прозрачный (грибок);

— рефлекторные цветные прозрачные;

— свеча Софт Лайт (мягкое опаловое покрытие);

— свечи витые матовые;

— свечи витые прозрачные.

ГАЛОГЕННЫЕ ЛАМПЫ

Лампы этого типа по устройству почти ничем не отличаются от обычных ламп накаливания, они и есть лампы накаливания, но при их производстве используются гораздо более совершенные технологии и материалы. Цена галогенных ламп существенно выше, но и свойства намного лучше. Индекс цветопередачи у галогенных ламп близок к 100%. Такое высокое значение Ra легко оценить при рисовании, шитье, работе с документами и в других случаях, когда требуется точность работы с цветом. Служит галогенная лампа около 4000 часов.

Высокий срок службы галогенных ламп реализуется не сам собой. Для этого нужно точно соблюдать условия эксплуатации. Важным параметром является температура лампы. При повышенной температуре ресурс сокращается очень ощутимо. Вообще галогенные лампы во время горения нагревают колбу намного больше, чем обычные лампы. Это объясняется как физическими процессами, так и небольшими размерами ламп. Если обычная лампа при мощности 100 W имеет размер небольшой груши, то галогенная такой же мощности не крупнее ягоды крыжовника. Такой напряжённый температурный режим предъявляет высокие требования ко всем элементам лампы, и при обращении с ней необходимо выполнять определённые правила:

— при установке или замене галогенных ламп нельзя касаться колбы руками. Надо пользоваться перчатками или просто упаковочной плёнкой, в которую лампа была завёрнута. Если всё-таки пришлось коснуться рукой, следует непременно протереть колбу тряпочкой, смоченной спиртом или ацетоном, а потом дать просохнуть. Если этого не сделать, частицы жира с рук при высокой температуре запекутся на стекле колбы. Это место будет иметь иной коэффициент расширения, и при нагреве возможны появление трещины и выход лампы из строя;

— регулярно, примерно раз в полгода (особенно это касается низковольтных ламп) необходимо вынимать и протирать лампочки, а если потребуется, то и чистить ножки от нагара. Также необходимо чистить отверстия в патронах. Это вызвано тем, что площадь контакта ножки с клеммой патрона крайне невелика, в десятки раз меньше, чем у обычной лампы с винтовым цоколем, а токи при равной мощности такие же для ламп 220 В и в 20 раз выше у ламп 12 В. Высокая нагруженность контактов повышает температуру лампы, вызывает искрение и выгорание патрона;

— если у вашего светильника разбилось защитное стекло, вам не удастся заменить его кусочком обычного оконного. Обычное стекло не выдержит исходящего от галогенной лампы теплового потока. В большинстве галогенных светильников лампа расположена очень близко к защитному стеклу. Таким способом достигаются миниатюрность светильника и высокие декоративные свойства. Например, у домашних люстр с обычными лампами их количество редко превышает 12 штук, а галогенные люстры могут иметь около 50 лампочек;

— у галогенных ламп нет однообразия в питающем напряжении, в бытовых светильниках чаще всего используются лампы на напряжение 220 и 12 В, встречаются на 6 и 24 В. Внимание: лампы на разное напряжение могут внешне ничем не отличаться друг от друга.

При использовании ламп с напряжением, отличным от сетевого, необходим трансформатор. Трансформаторы имеют немалые вес, объем и цену. Наличие трансформатора — главный недостаток светильников с галогенными лампами. Внимание: существуют люстры, имеющие от 18 до 24 двенадцативольтовых галогенных ламп, но не имеющие трансформатора. Лампы там включены последовательно, как в новогодней гирлянде, при сгорании одной лампы гаснут все! Определить сгоревшую лампу можно, только проверив все лампы до единой. Поэтому от покупки такого светильника надо отказываться сразу.

ЭНЕРГОСБЕРЕГАЮЩИЕ ЛАМПЫ

Вообще-то энергосберегающими можно назвать любые лампы с высокой светоотдачей: чем она выше, тем больше энергии вы сбережёте.

Светоотдача люминесцентной лампы очень высока, примерно 40—80 лм/Вт, цветопередача — около 85%, срок службы — 10 000 часов. Люминесцентные лампы появились довольно давно. Станции метро, производственные и офисные помещения, крупные магазины, где приходится использовать много светильников практически весь рабочий день или круглосуточно, освещены исключительно люминесцентными лампами. Их использование даёт громадную экономию электроэнергии. В быту распространение таких ламп несравненно скромней. Главная причина — посредственная цветопередача люминесцентных ламп, многие люди в свете этих ламп через некоторое время начинают чувствовать себя неуютно.

Из-за не слишком хороших характеристик по цветопередаче изготовители делят свои изделия на несколько групп, по цвету излучаемого света, и обязательно ставят соответствующее условное обозначение (см. таблицу 1).

За год работы при нынешних (2007 год) ценах на электричество энергосберегающая лампочка почти окупилась и дальше начнёт приносить экономию, тем большую, чем дороже будет стоить энергия (а в удорожании сомневаться не приходится) и чем больше вы пользуетесь электроосвещением. Особо отметим, что стоит приобретать лампы только известных марок и в надёжных магазинах. Технологии изготовления энергосберегающих ламп совершенствуются с каждым годом. В настоящее время выпускаются модели, позволяющие экономить в сравнении с лампами накаливания до 80% электроэнергии. Да и стоимость их постепенно, но всё же снижается.

СВЕТОДИОДНЫЕ ЛАМПЫ

На данный момент светодиодные лампы нельзя считать равноправными соперниками другим светильникам в сфере бытового освещения. С другой стороны, есть немало областей, в которых светодиоды вытеснили конкурентов практически полностью, например в сфере индикации. Главное достоинство светодиодной лампы — фантастическая долговечность, срок службы доходит от 25 000 до 100 000 часов при непрерывной работе от 3 до 12 лет! Светоотдача — до 100 лм/Вт. Хотя цветопередачу нельзя назвать даже средней, светодиоды излучают свет в довольно узком спектре, можно подобрать практически любой цвет излучения. Светодиоды нагреваются столь незначительно, что их применяют там, где очень важно сохранить температурный режим.

Стандартные цоколи позволяют вворачивать светодиодные лампы в патроны для любых других ламп. Светодиодные лампы используются от декоративного микроосвещения до использования в мощных прожекторах и уличных светильниках. Но в большинстве даже специализированных магазинов таких ламп в продаже пока нет. Широкому распространению светодиодных ламп препятствует их цветовые качества и высокая цена: они дороже ламп накаливания в 10—20 раз.

Впрочем, все новые разработки проходили стадию высоких цен, постепенно с развитием технологии цены стремительно падают. Очень возможно, что распространённость светодиодных ламп в самые ближайшие годы резко возрастёт.

Теперь, когда мы узнали особенности ламп разных типов, сравним их стоимость.

Примерное соотношение цен на лампы для бытового освещения

ДОПОЛНИТЕЛЬНЫЕ УСТРОЙСТВА СВЕТИЛЬНИКОВ

Трансформатор. Для питания низковольтных галогенных ламп требуется пониженное напряжение. Для этого в светильниках используются понижающие, защитные трансформаторы. По устройству они разделяются на электромагнитные и электронные. Электромагнитный трансформатор вполне традиционен: металлический или ферритовый сердечник, и на нём две обмотки — сетевая и понижающая, к которой подключены лампочки. Простота устройства даёт высокую надёжность, однако оно имеет высокий вес и довольно низкий кпд. При использовании нескольких десятков лампочек в одном светильнике эти недостатки могут перерасти в проблему. Такой трансформатор при работе издаёт заметное гудение. При замыкании в цепи ламп происходит перегрев и возможен выход устройства из строя с большим выделением тепла и дыма. Чтобы избежать этого, в схеме обычно используется плавкий предохранитель, заменить который непросто.

Электронный трансформатор называется трансформатором больше по инерции, по существу, это электронная схема. Вес его в несколько раз меньше, никакого гудения нет, при замыкании происходит автоматическое отключение. Конфигурация корпуса может быть практически любой и позволяет разместить устройство без ущерба внешнему виду светильника.

Цены на трансформаторы для питания галогенных ламп начинаются от 60 руб. и доходят до нескольких тысяч, в зависимости от мощности, конструкции, марки и качества. Электромагнитные и электронные трансформаторы стóят примерно одинаково. Весьма существенно цена зависит от продавца. В разных магазинах цены на однотипные устройства могут отличаться вдвое!

Диммер. Этот электронный прибор служит для бесступенчатой регулировки яркости за счёт изменения напряжения. Диммер ставится в разрыв питающего (фазового) провода и может использоваться как с обычными лампами, так и с галогенными. Для люминесцентных ламп он не применяется. Для чего он нужен? Если люстра и так имеет несколько режимов включения, ставить устройство можно не спешить, а вот если проводка предполагает только один режим, диммер избавит от необходимости долбить стены, чтобы проложить ещё один или несколько проводов. Диммеры можно установить и для регулировки напряжения в розетках, куда включены настольные лампы или бра. Кстати, во многих таких светильниках диммеры уже встроены.

Диммер позволяет экономить до 50% электроэнергии. Максимальный эффект достигается только при правильном подборе устройства. Они выпускаются на разную мощность, которая должна быть минимум на 20% больше максимальной мощности светильника. При работе в условиях плохой теплоотдачи, в деревянных или кирпичных стенах, или при высокой температуре воздуха этот запас должен быть увеличен до 50%. Кроме обычных диммеров, ручки которых надо вращать и нажимать, существуют сенсорные. Чтобы отрегулировать свет, достаточно просто прикоснуться к ним и немного подержать руку. От длительности касания будет зависеть яркость света. Сначала она будет нарастать, потом падать. Диммеры используют как составной элемент дистанционного управления освещением. Цены на диммеры начинаются от 500 руб.

Советы мастеру

СКОЛЬКО НУЖНО СВЕТА?

Сколько человеку нужно света и какого? Этот вопрос порождает ещё множество вопросов: какому человеку, когда, для чего… Для самых распространённых случаев ответ посмотрим в таблице 3.

*Лк (люкс) — в международной системе СИ — единица освещённости; освещённость, создаваемая световым потоком 1 лм, равномерно распределённым по поверхности площадью 1 м 2 .

Рассчитать освещённость и проверить, соответствует ли она нормам, можно при помощи несложной формулы: суммарная мощность ламп в помещении (Вт) умножается на светоотдачу ламп (лм) и делится на площадь помещения (м 2 ).

РЕМОНТИРУЕМ СВЕТИЛЬНИК

• При определении неисправностей начинайте с простых причин. Проверьте работоспособность розетки, подключив в неё другой, заведомо исправный электроприбор. Проверьте лампочку, ввернув её в другой патрон, потом проверьте патрон, ввернув в него другую лампочку.

• В светильниках с понижающим трансформатором поищите предохранитель, проверьте и при необходимости замените. В большинстве трансформаторных светильников он находится внутри изолирующей трубочки и снаружи похож на другие детали, включён он между одним из концов сетевого шнура и схемой.

• Проверьте работу выключателя и целостность электрошнура. И то и другое ремонтировать не надо, только менять.

• Внимание: хрустальные (стеклянные) детали никогда не должны соприкасаться с металлическими, между стеклом и металлом обязательно должны стоять пластмассовые или фетровые прокладки. Стеклянные детали никогда туго не затягивают гайками, для достижения этого ставят дистанционные проставки. Гайка стягивает проставку чуть раньше, чем стянулась бы стеклянная деталь.

• Если вашей люстре больше 10 лет и у неё выгорел хотя бы один патрон, менять необходимо все патроны и всю проводку. Если этого не сделать, то потом с периодичностью раз в год вам придётся снимать люстру и менять ещё патроны один за одним. При замыкании в первом повреждённом патроне вся проводка испытывает большую нагрузку и сильно нагревается, при этом изоляция проводов может сильно пострадать. После такого перегрева изоляция выполняет свои функции очень плохо.

• Ремонтировать дополнительные электронные приборы (диммеры, дистанционное управление, реле времени и т.д.) не стоит и искать мастерскую, где их чинят, тоже не нужно — невыгодно. Если они не исправны, меняйте.

Читайте также: