Какой лабораторный блок питания выбрать для автоэлектрика

Обновлено: 17.05.2024

Для питания различных схем нужны разные блоки питания с разными напряжениями и токами, для таких целей в мастерской необходим регулируемый блок питания, то есть лабораторный блок питания. Цены на такие устройства довольно внушительны и поэтому придется собирать лабораторный блок питания своими руками. Из того что у меня есть в закромах получится неплохой прибор с выходом до 18В и током до 2.5А, для индикации подойдет только что пришедший с Китая цифровой вольтметр, но обо всем по порядку.

Во первых максимальные выходные параметры были выбраны в связи с имеющимся свободным трансформатором от стерео колонок 2*17В 2А. обмотки подключены параллельно. После диодного моста с конденсаторами напряжение подрастет примерно до 24В. Надо учитывать, что напряжение должно быть с запасом. Падение на транзисторах несколько вольт плюс под нагрузкой еще просядет на несколько вольт, чистыми останется 19В поэтому 18В это стабильный максимум, что можно выжать. Нагрузка в 2,5А выбрана так, что бы сильно не нагружать обмотки трансформатора, в таком режиме трансформатор будет себя лучше чувствовать, потому что нагружен будет на 70-80%. Чем питать разобрался, теперь что что питать

Схема ПиДБП 14

Теперь пора выбрать схему для лабораторного блока питания. Схема была выбрана, собрана и опробована, это простой и доступный лабораторный блок питания (ПИДБП) V14.Схема была взята с форума Паяльника и немного переделана под свои выходные напряжения и токи

На DA1.3 собран индикатор перегрузки по току. Когда идет ограничение по току, этот индикатор указывает об этом
Для измерения тока нагрузки на DA1.4 собран усилитель напряжения пересчитанный на усиление в 5 раз. Когда нагрузка максимальна на резисторе R20 падение 0,5В, это напряжение усиливается и на выходе ОУ напряжение, равное по значению току потребления.

Ну и на первых двух компараторах собрано сердце схемы. Это стабилизатор тока управляющий стабилизатором напряжения. Я собирал нечто похожее, только в схеме управление током и напряжением было независимо. Подробно описывать как работает последовательное включение стабилизаторов не буду, можете почитать о параллельном в статье простое зарядное устройство своими руками, принцип работы схож.
В схеме были пересчитаны R12R14 для выходного напряжения в 18В, а R11 для регулировки напряжения был заменен на 5к. R20 пересчитан на ток 2,5А, при максимальном токе на R20 должно быть падение 0,5В. R20 рассчитывается по простой формуле из закона Ома R20=0.5(В)\Iмакс(А)

Что бы схемку сделать немного практичней добавил схемку защиты от короткого замыкания и переполюсовки. Эта схема хорошо себя зарекомендовала и леплю её куда попало))
Короче определился, что где буду использовать. Собрал все компоненты в кучу, развел печатную плату и все распаял

ПиДБП на печатной плате

Как видно выходные транзисторы использовал КТ803А в параллельном включении. Общая рассеиваемая мощность 120Вт, максимальный ток 20А напряжение пробоя 60В. Оба транзисторы выведены проводами на общий радиатор за пределы корпуса. Кстати корпус использовал от старой пластиковой музыкальной колонки

КТ803А в параллельном включении

Передняя панель в SPL6


Печатная плата готова, корпус есть. транзисторы на радиаторе. Пришло время окончательно определиться какие задачи будут выполняться лабораторным блоком питания и развести переднюю панель. Панель буду рисовать в SPL6.

На панеле размещу вольтметр, регулятор напряжения и тока.
Переключатель измерение вольт и ампер.
Два индикатора перегрузка и защита от КЗ
Переключатель между выходом с диодного моста и выходом ЛБП
Переключатель между ЛБП и зарядным. Минусовой выход либо с ЛБП либо с защиты от переполюсовки и кз
Теперь зная что где будет, можно сложить общую схему лабораторного блока питания и раскидывать косы проводов от платы к передней панеле. Вот что вышло


Думаю пора собирать все в корпус
Вот фото платы собранной окончательно

А вот так все выглядит в корпусе.

Лабораторный блок питания в корпусе

Первое включение лабораторного блока питания

После сборки всего в корпус можно попробовать включить лабораторный питальник в розетку. На выходе 18,5В
Первое включение лабораторного блока питания под нагрузкой 50% в качестве нагрузки двигатель от шуруповерта 12В. Кстати по индикатору перегрузка видно, что блок питания в режиме ограничения тока. На индикаторе ток потребления 1,28А

Первое включение лабораторного блока питания под нагрузкой 50%

Вот такой лабораторный блок питания у меня получился

переделанный вольтметр

В качестве индикатора использовал вольтметр из Китая, предварительно его переделав. Вольтметр указывал тоже напряжения от которого питался, я решил разделить эти каналы, что бы была возможность измерять от 0В до 20В. Я убрал резистор соединяющий контакты питания и измерения напряжения, он помечен красным на фото. Запитал индикатор от опорного напряжения схемы 12В

Такой вольтметр можно заказать на AliExpress. вот ссылка

Если нужны результаты испытаний этого блока, пожалуйста напишите в комментариях.

В качестве блока питания (БП) для наладочных работ, иначе говоря, лабораторного, можно применить готовый, приспособить имеющийся или изготовить самому. Но прежде необходимо определиться с его параметрами, которые зависят, в основном, от вида предполагаемых занятий. В статье рассмотрено несколько вариантов БП для разных видов использования.

Свойства БП и их переоборудование

Классифицируются БП по:

  • мощности;
  • диапазонам и типам напряжения;
  • видам защит;
  • методам преобразования.

Для ремонта и настройки портативных приборов достаточно маломощного БП с диапазоном напряжения от 1,5 до 12В и током 0,4 – 1А. В таких пределах мощности защита желательна, но необязательна.

Для ремонта смартфонов, планшетов, камер и акустических систем, также им подобных приборов, нужен БП средней мощности. Диапазон напряжения в них составляет от 3,3 до 24В, реже 36В. Максимальный ток от 2 до 5 ампер при напряжении до 5В и 3А при 24 и 36В. Такое питающее устройство должно быть оборудовано защитой по максимальному току, желательно регулируемой.

Если приходится иметь дело с контроллерами мотор-колес от электровелосипедов, самокатов или детского электротранспорта, то необходим мощный БП. Диапазон напряжений у него должен быть от 6 до 72В. Переключение напряжения в таких БП обычно ступенчатое, реже с плавной регулировкой. Предел тока срабатывания защиты фиксированный или регулируемый. Также любой из БП можно дополнить отдельным напряжением +5В с разъёмом usb, micro-usb, usb type-C и др.

Многофункциональный маломощный БП

Для налаживания и настройки маломощных гаджетов, можно использовать готовый БП, например, китайского производителя.

Маломощные БП (См.рис 2) имеет диапазоны напряжений:

Также в нём есть реверс полярности. Защита в этом устройстве отсутствует, о состоянии перегрузки или КЗ можно судить по свечению led-индикатора. Такой адаптер удобен для пользования приборами с различными стандартами разъёмов. Его можно изготовить своими руками, перемотав вторичную обмотку трансформатора. Число витков для каждого отвода можно рассчитать, зная сечение магнитопровода, по представленной ниже таблице 1.

Лабораторный БП из компьютерного

Компьютерные БП, мощностью от 120Вт до 300Вт или 450Вт можно взять из устаревших персональных компьютеров (ПК). Такого типа устройство б/у можно приобрести в объявлениях недорого. Из компьютерных БП можно сделать регулируемый лабораторный прибор средней или большой мощности.

Существует 2 вида переоборудования с увеличением и регулировкой напряжения:

  1. Переделка схемы самого блока;
  2. С помощью дополнительного преобразователя.

Первый способ рассматриваться не будет, потому что для каждой версии схемы компьютерного БП требуется индивидуальный способ доработки. Это связано с устройством защитного отключения, которое работает от фиксированного напряжения в обратной связи. К тому же схемы преобразования и защиты бывают различными.

Компьютерный БП можно дополнить повышающим DC-DC преобразователем, мощностью 150Вт (300Вт). Диапазон напряжений у представленных, в основном на китайском рынке, блоков, лежит в пределах 10 – 32В. Ток нагрузки можно также регулировать в диапазоне от 0,2 до 8А (16А). В зависимости от типа ремонтных или наладочных работ выбирают устройство с требуемым диапазоном выходного напряжения. При необходимости функции напряжения до 12В можно дополнить собираемое устройство понижающим блоком DC-DC. а при настройке техники с переменным напряжением подойдёт преобразователь DC-AC.

Для удобства подстроечные потенциометры можно выпаять и вместо их установить переменные резисторы с линейной зависимостью сопротивления от угла поворота.

Советкие переменные резисторы имеют буквенное обозначение зависимости угла поворота от сопротивления : А — линейная; Б — логорифмическая; В — обратно-логарифмическая.
Заарубежные аналоги : A — обратно-логарифмическая; B — линейная; C — логорифмическая.

Из импульсного БП

В устаревших DVD-проигрывателях, видеомагнитофонах, кинескопных телевизорах и мониторах, которые не подлежат дальнейшей эксплуатации, также имеются импульсные БП, стоимостью не дороже драгметаллов.

Выбор лабораторного блока питания — задача с которой рано или поздно сталкивается практически каждый электронщик и задача это не простая. Для облегчения выбора лабораторного блока питания в данной статье описываются преимущества и недостатки основных типов лабораторных блоков питания и их параметров. Предполагается, что лабораторный блок питания имеет режимы стабилизации напряжения и тока, иначе такой блок питания пожалуй не является лабораторным.

Импульсный или линейный лабораторный блок питания

Для начала определимся с понятиями, под импульсными будут иметься лабораторные блоки питания у которых регулировка выходного напряжения и тока обеспечивается посредством широтно-импульсной модуляции (ШИМ) у линейных – посредством линейного регулирующего элемента, как правило биполярного транзистора.

Преимущества импульсного блока питания:

  • малые габариты и вес;
  • как правило большой выходной ток;
  • относительно меньшая стоимость;
  • высокий КПД.

Недостатки импульсного блока питания:

Преимущества линейных блоков питания:

  • малые пульсации выходного напряжения и тока;
  • высокое быстродействие.

Недостатки линейных блоков питания:

  • большие габариты и вес;
  • относительно небольшой выходной ток (как правило не более 5А);
  • низкий КПД.

С такими параметрами как габариты, вес и КПД и так все понятно, тут выбор скорее дело вкуса и наличия свободного места на рабочем столе, а вот относительно пульсаций, помех и быстродействия рассмотрим подробнее.

Таким образом, чтобы получить низкие пульсации напряжения (тока) требуются конденсаторы относительно большой емкости (как правило на уровне 1000-2000 мкФ). Конечно если значительно увеличить частоту ШИМ, то емкость конденсаторов можно уменьшить, но тогда значительно возрастут потери от переключения транзисторов и преимущества импульсного блока питания сойдут на нет.

Большая емкость на выходе лабораторного блока питания нежелательна из соображений защиты устройства, которое питается от блока питания ведь разряд этой емкости в случае перегрузки по току происходит на нагрузку, и не смотря на наличие у блока питания режима стабилизации тока устройство может выйти из строя.

Для лучшего понимания вышеизложенного рассмотрим простейший случай питания светодиода от лабораторного блока питания. Допустим номинальный ток светодиода 20мА, падение напряжения 2В, так вот если мы выставим на блоке питания ограничение тока 20мА, а напряжение хотя бы 5В, то при подключении к импульсному источнику питания с большой емкость на выходе светодиод скорее всего сгорит т.к. выходной конденсатор, заряженный до 5В, будет разряжаться на светодиод неконтролируемым током. Конечно можно заранее установить заведомо меньшее напряжение, но лабораторный блок питания на то и лабораторный, что бы выручать электронщика в нештатных ситуациях. Тоже касается и неправильного подключения плюс/минус. В случае импульсного блока питания выходной конденсатор будет разряжаться неконтролируемым током на устройство и большой вероятностью повредит его.

В линейных блоках питания на выходе устанавливается относительно небольшая емкость ( на уровне 10-100 мкФ) и нужна она скорее не для стабилизации выходного напряжения, а для обеспечения устойчивости контуров стабилизации тока и напряжения.

Линейный лабораторный блок питания с маленькой емкостью на выходе более шустрый и с большой вероятностью спасет Ваше устройство при нештатных ситуациях.

Пульсации выходного напряжения (тока) импульсного блока питания обычно больше, чем у линейного, но справедливости ради следует заметить, что даже уровня пульсации импульсного блока питания достаточно для подавляющего числа устройств, так что это скорее не недостаток, а особенность.

При значительных преимуществах линейных источников питания имеют они и существенный недостаток — относительно малый выходной ток, как правило максимальный выходной ток линейных источников питания составляет 5А. Связано это с большими потерями на регулирующем элементе.

Кроме чисто импульсных и линейных блоков питания бывают лабораторные блоки питания с комбинированным регулированием, в частности лабораторный блок питания PS-3010PL3. В данном блоке питания используется двойное регулирование напряжения, напряжение сначала снижается импульсным стабилизатором до напряжения на 1-2В выше требуемого выходного напряжения, а затем контуром линейного стабилизатора напряжения снижается до требуемого, такое решение позволяет обеспечить высокое быстродействие контура стабилизации и высокий выходной ток (до 10А). Выходные пульсации такого блока питания чуть выше чем у традиционного линейного блока питания, но ниже чем у традиционного импульсного блока питания.

Диапазон выходного напряжения и тока, количество каналов

Наиболее распространены лабораторные блоки питания с максимальным выходным напряжением 18, 30, 60 В и максимальным выходным током 3, 5, 10А. При выходных токах более 10А градация как правило произвольная.

Выбор диапазона напряжения и тока лабораторного блока питания зависит от выполняемых задач, так для питания низковольтных устройств на микроконтроллерах достаточно 18В блока питания.

Если Вы еще только начинаете осваивать электронику и не можете предугадать какие устройства в будущем будет собирать и отлаживать, то при наличии бюджета лучше сделать выбор лабораторного блока питания на 30В, при ограниченном бюджете подойдет и 18В блок питания, в будущем его можно использовать как дополнительный или резервный блок питания если потребуется приобрести блок питания на 30 или 60В.
С максимальным выходным напряжением разобрались, теперь рассмотрим какой нам нужен выходной ток.

Для большинства случаев выходного тока 5А более чем достаточно, но если Вы занимаетесь например автомобильной электроникой, то не лишним будет иметь блок питания с выходным током до 10-20А. Лабораторный блок питания с выходным током до 3А подойдет если Вы не планируете отлаживать относительно мощных устройств, например ограничиваетесь программированием микроконтроллеров.

При выборе лабораторного блока питания также следует обратить внимание на точность и дискретность измерения выходного тока, большинство бюджетных блоков питания имеют дискретность измерения тока 10 мА, чего может оказаться недостаточным для отладки маломощных устройств, устройств с батарейным питанием.

Сколько же каналов должен иметь лабораторный блок питания ? Наиболее распространены одноканальные блоки питания, но если Вы планируете заниматься аудиотехникой, то желательно иметь двуканальный блок питания, допускающий последовательное соединение каналов, что позволит получать двуполярное напряжение питания.

Двух канальные лабораторные блоки питания также могут быть удобны при одновременной отладке нескольких устройств или устройств с множеством вторичных источников питания, но многоканальные блоки питания значительно дороже одноканальных и для питания относительно маломощных устройств может оказаться проще собрать самостоятельно дополнительный маломощный источник питания, например на 5 или 3,3В выходного напряжения и 1-2А выходного тока.

Интерфейс – крутилки, кнопки, индикаторы

И снова немного терминологии. Лабораторные блоки питания бывают программируемые и обычные (непрограммируемые). В программируемых лабораторных блоках питания выходное напряжение задается клавиатурой, кнопками или энкодером и в контуре стабилизации тока и напряжения с использованием цифроаналоговых преобразователей (ЦАП) формируются соответствующие опорные напряжения т.е. выходное напряжение и ток явно задаются пользователем, а блок питания их обеспечивает ( с учетом погрешности естественно).

Следует отметить, что как правило программируемые лабораторные блоки питания имеют функцию подключения и отключения нагрузки
Таким образом программируемый лабораторный блок питания является более предпочтительным выбором, т.к. более удобен в эксплуатации, но за удобство приходится платить поскольку эти блоки питания дороже обычных.

Важной особенностью обычных (непрограммируемых) блоков питания является и то, что при их включении/выключении на выходе возможны кратковременные всплески напряжения, способные причинить вред подключенному устройству, поэтому если все же Вы сделали выбор в пользу такого блока питания — проверьте его на наличие такой особенности.

Следующий элемент интерфейса — индикаторы, у программируемых блоков питания индикация выходных параметров (тока и напряжения) осуществляется цифровыми индикаторами, а вот у обычных лабораторных блоков питания встречаются стрелочные индикаторы.

С точки зрения точности отображения цифровые индикаторы лучше т.к. измерение напряжения и тока осуществляется посредством аналого-цифрового преобразователя (АЦП) и типовая погрешность показаний составляется 0,5-1%, в то время как при наличии стрелочных индикаторов напряжение и ток измеряется непосредственно ими, при этом типовая погрешность измерения составляет 1,5-2,5% и может со временем увеличиваться по мере ослабления пружины стрелочного механизма.

Резюме

Особо следует отметить блоки питания с комбинированным регулированием ( см. блок питания PS-3010PL3) они имеют высокое быстродействие (см. видео) и относительно высокий выходной ток.
Для начального уровня и питания устройств на микроконтроллеров достаточно лабораторного блока питания с выходными параметрами 18В 3А, но более универсальным (с запасом на будущее) будет блок питания с выходными параметрами 30В 5А.

Если планируется отладка устройств с батарейным питанием то следует обратить внимание на дискретность измерения тока, предпочтение следует отдавать блокам питания с разрешением 1мА.

Программируемые лабораторные блоки питания более удобны в использовании и имеют функцию отключения нагрузки, хотя кому то удобнее может быть классический вариант с переменными резисторами. Если у Вас лабораторный блок питания с переменными резисторами, то следует проверить не возникают ли на выходе блока питания всплесков (выбросов) напряжения при включении и выключении питания.

Выбор лабораторного блока питания непростая задача, надеемся, что наша статья поможет выбрать удобный для Вас лабораторный блок питания.

Читайте также: