Какой механизм своевременно впускает в цилиндры двигателя горючую смесь и выпускает газы

Обновлено: 05.07.2024

6. КОЛИЧЕСТВО ПОДАВАЕМОЙ ИЗ КАРБЮРАТОРА ГОРЮЧЕЙ СМЕСИ ЗАВИСИТ ОТ ПОЛОЖЕНИЯ:

1) воздушной заслонки;

2) дроссельной заслонки;

3) клапана экономайзера;

4) поршня ускорительного насоса;

5) уровня топлива в поплавковой камере.

7. КОЭФФИЦИЕНТОМ ИЗБЫТКА ВОЗДУХА НАЗЫВАЕТСЯ ОТНОШЕНИЕ КОЛИЧЕСТВА_____ПОСТУПИВШЕГО В ЦИЛИНДР, К ЕГО НЕОБХОДИМОМУ КОЛИЧЕСТВУ ДЛЯ ПОЛНОГО СГОРАНИЯ ПОСТУПИВШЕГО В ЦИЛИНДР ТОПЛИВА.

8. ГОРЮЧАЯ СМЕСЬ КОЭФФИЦИЕНТ ИЗБЫТКА ВОЗДУХА:

1) бедная; А. а = 0,4—0,7;

2) богатая; В. а = 1,0;

3) обедненная; С. а = 1,05. 1,15;

4) нормальная; D. а = 1,2. 1,25;

5) обогащенная. Е. а = 0,8. 0,95.

9. РЕЖИМЫ РАБОТЫ ДВИГАТЕЛЯ

2) средние нагрузки;

3) пуска холодного двигателя;

4) ускорение и полная мощность.

КОЭФФИЦИЕНТ ИЗБЫТКА ВОЗДУХА:

10. ПОВЫШЕННЫЙ УРОВЕНЬ ТОПЛИВА В ПОПЛАВКОВОЙ КАМЕРЕ КАРБЮРАТОРА ВЫЗОВЕТ:

1) хлопки в глушителе;

2) увеличение мощности;

3) хлопки в карбюраторе;

4) уменьшение мощности;

5) переобеднение горючей смеси;

6) переобогащение горючей смеси.

11. ПОДДЕРЖАНИЕ УРОВНЯ БЕНЗИНА В ПОПЛАВКОВОЙ КАМЕРЕ ОБЕСПЕЧИВАЕТСЯ:

1) положением поплавка;

2) работой экономайзера;

3) работой ускорительного насоса;

4) положением воздушной заслонки;

5) положением дроссельной заслонки.

12. ПЕРЕОБЕДНЕНИЕ ГОРЮЧЕЙ СМЕСИ МОЖЕТ БЫТЬ ВЫЗВАНО:

1) засорением воздушного фильтра;

2) засорением топливного жиклера;

3) засорением воздушного жиклера;

4) низким уровнем топлива в поплавковой камере;

5) высоким уровнем топлива в поплавковой камере;

6) подсасыванием воздуха через неплотности впускной системы.

13. ПОЗИЦИЯ 10 НА РИС. 6.1 ОЗНАЧАЕТ КЛАПАН:

4) поплавковой камеры;

5) обратный ускорительного насоса.

Рис. 6.1. Карбюратор K-88AM

14. ПОЗИЦИЯ 6 НА РИС. 6.1 ОЗНАЧАЕТ ОН СЛУЖИТ ДЛЯ:

1) ускорения потока воздуха;

2) обогащения состава смеси;

3) увеличения разряжения перед распылителем;

4) поддержания уровня топлива в поплавковой камере.

15. В СИСТЕМУ ХОЛОСТОГО ХОДА ВХОДЯТ ПОЗИЦИИ НА РИС. 6.1:

16. СИСТЕМА ПУСКА ХОЛОДНОГО ДВИГАТЕЛЯ:

1) обедняет смесь;

2) обогащает смесь;

3) прикрывает воздушную заслонку;

4) открывает воздушную заслонку;

5) закрывает дроссельную заслонку;

6) приоткрывает дроссельную заслонку.

17. НА РИС. 6.2 ПОКАЗАН:

2) ускорительный насос;


3) система холостого хода карбюратора;

4) ограничитель максимальной частоты вращения.

С ПРАВОЙ СТОРОНЫ ПОКАЗАН:

5) топливный насос;

6) топливный фильтр;

7) датчик частоты вращения;

8) исполнительный механизм.

9) на карбюраторе;

10) на носке коленвала;

11) на носке распредвала.

18. ЭКОНОМАЙЗЕР КАРБЮРАТОРА ГОРЮЧУЮ СМЕСЬ:

7) холостого хода;

19. ДВУХКАМЕРНЫЕ КАРБЮРАТОРЫ ИМЕЮТ:

1) два экономайзера;

2) две поплавковые камеры;

3) две смесительные камеры;

4) две дроссельные заслонки;

5) два ускорительных насоса.

20. ПРОИЗВОДИТЕЛЬНОСТЬ БЕНЗОНАСОСА:

1) соответствует потребности двигателя;

2) превышает потребность двигателя в 3—5 раз;

3) превышает потребность двигателя в 2—3 раз;

4) превышает потребность двигателя в 2 раза.

21. НОМЕР ПОЗИЦИИ (РИС. 6.3) КЛАПАНА ЭКОНОМАЙЗЕРА ПРИНУДИТЕЛЬНОГО ХОЛОСТОГО ХОДА:


22. ДЕТАЛИ УСКОРИТЕЛЬНОГО НАСОСА НА РИС. 6.3:

1) 5 и 6; 3) 13 и 15;

2) 9 и 10, 4) 30 и 31.

23. ТИПЫ ВОЗДУШНЫХ ФИЛЬТРОВ:

1) сухой; 5) двухступенчатый;

2) мокрый; 6) трехступенчатый.

24. НАДДУВ ДВИГАТЕЛЯ МОЖЕТ БЫТЬ:

ОН ПРОИЗВОДИТСЯ ДЛЯ:

5) увеличении массы свежего заряда;

6) увеличения объема свежего заряда;

7) увеличения мощности двигателя;

8) охлаждения двигателя.

25. РАБОТА ФОРСУНКИ ИНЖЕКТОРНОГО ДВИГАТЕЛЯ УПРАВЛЯЕТСЯ:

1) топливной рампой;

2) регулятором давления;

3) электронным блоком управления;

4) датчиком массового расхода воздуха;

5) датчиком скорости движения.

26. ЭЛЕКТРОННЫЙ БЛОК УПРАВЛЕНИЯ СИСТЕМЫ ПИТАНИЯ ТИПА MOTRONIC:

1) управляет работой форсунок;

2) управляет работой бензонасоса;

3) управляет работой системы зажигания;

4) контролирует состояние топливного фильтра;

5) анализирует сигналы, полученные с датчиков;

6) информирует водителя об исправности системы;

7) получает сигналы с датчиков состояния двигателя.

27. РАЗМЕЩЕНИЕ ТОПЛИВНОГО НАСОСА СИТСЕМЫ ПИТАНИЯ ТИПА MOTRONIC:

2) в топливном баке;

3) на топливном баке;

4) в топливном фильтре.

6) механический от коленчатого вала;

7) механический от распределительного вала.

28. КАТАЛИТИЧЕСКИЙ НЕЙТРАЛИЗАТОР ОТРАБОТАВШИХ ГАЗОВ:

1) ускоряет процесс выпуска ОГ;

2) изменяет химический состав газов;

3) переводит вредные компоненты газов в безвредные.

5) только после прогрева до 300 "С;

6) только на холодном двигателе.

29. ДЕТАЛЬ 5 НА РИС. 6.4 ОЗНАЧАЕТ_ДАВЛЕНИЯ ТОПЛИВА.

ОН ПОДДЕРЖИВАЕТ ДАВЛЕНИЕ В РАМПЕ, МПа:

1) 0,13-0,18; 3) 0,33-0,38;

2) 0,23-0,28; 4) 0,53-0,58.

Рис. 6.4. Рампа форсунок впрыскового двигателя

30. ПОД ПОЗИЦИЕЙ 2 НА РИС. 6.4 УКАЗАНА ______________

3) электронным блоком управления.


ОТВЕТЫ

Система рециркуляции отработавших газов (EGR – Exhaust Gas Recirculation) предназначена для снижения в выхлопных газах оксидов азота за счет возврата части отработавших газов во впускной коллектор и далее в цилиндры двигателя.

Отработавшие газы, образующиеся при сгорании топливовоздушной смеси в двигателе внутреннего сгорания, содержат загрязняющие вещества, такие как оксид углерода (CO), оксиды азота (NOx), углеводороды (HC) и твердые частицы (PM), которые очень вредны для человека и окружающей среды.

Особо токсичны оксиды азота, которые образуются при высокой температуре и избытке кислорода. Оба эти условия присутствуют в процессе сгорания топлива в любом двигателе, но особенно много их образуется в высокофорсированном дизеле, поскольку воздух, поступающий в его цилиндры, не дросселируются и всегда имеется его избыток. Кроме того, в камерах сгорания возникает высокая температура, а чем она выше, тем больше образуется оксидов азота. По этим причинам дизельный двигатель выбрасывает намного больше оксидов азота в выхлопных газах по сравнению с бензиновым.

Возврат части отработавших газов (ОГ) во впускной коллектор позволяет снизить температуру сгорания топливовоздушной смеси и тем самым уменьшить образование оксидов азота. При этом соотношение компонентов в смеси остается прежними и мощностные характеристики двигателя изменяются незначительно.

Система рециркуляции отработавших газов (EGR) применяется в основном на дизельных двигателях, реже - на бензиновых.

В зависимости от требований стандарта токсичности ОГ, на дизельных двигателях применяются различные схемы системы рециркуляции ОГ: высокого давления, низкого давления и гибридная (комбинированная) система рециркуляции.

EGR, дизельный двигатель, коллектор

EGR высокого давления наиболее распространена и применяется на дизельных двигателях, соответствующих требованиям Евро 4 (содержание оксида азота в отработавших газах не более 0,25 г/км). Система обеспечивает отвод части ОГ из выпускного коллектора перед турбокомпрессором и подачу их в канал перед впускным коллектором. (Bosch).

Данная система имеет высокие показатели быстродействия газового контура рециркуляции. Кроме того, поскольку выхлопной газ смешивается с всасываемым воздухом после турбокомпрессора, твердые частицы не попадают на колесо компрессора и не разрушают его. Однако охладитель EGR при этом должен выдерживать разрушительное воздействие высокого давления и высокой температуры выхлопных газов.

В такой системе для осуществления процесса перепуска имеется специальный клапан рециркуляции, который оснащен пневматическим или электрическим приводом.

Количество перепускаемых газов регулируется с помощью системы управления двигателем, которая одновременно управляет дроссельной заслонкой и клапаном рециркуляции. EGR не работает на холостом ходу, при холодном двигателе, а также при полностью открытой дроссельной заслонке.

На отдельных двигателях в EGR применяется охлаждение ОГ путем прохождения их через специальный радиатор. Вследствие этого дополнительно снижается температура сгорания в цилиндрах и, тем самым, уменьшается образование оксидов азота.

Стандарт Euro 6 повысил требования, снизив лимит выбросов NOx до 0,08 г/км по сравнению со 0,18 г/км для Euro 5. Реализация более жестких условий потребовала создания системы рециркуляции низкого давления.

Bosch, радиатор, турбокомпрессор

В системе рециркуляции низкого давления отработавшие газы отводятся после сажевого фильтра, охлаждаются в специальном радиаторе, проходят через клапан рециркуляции и подаются во впускную систему перед турбокомпрессором. (Bosch).

Такая система обеспечивает меньшую температуру ОГ, отсутствие частиц сажи и, в конечном счете, меньшее содержание оксидов азота в выхлопе. Помимо этого, все отработавшие газы проходят через турбину компрессора, поэтому давление наддува не снижается ни на каком режиме.

Из-за более низких температур EGR низкого давления более эффективна в снижении выбросов NOx по сравнению с системой высокого давления. Но у нее есть и недостаток - более высокая инерционность выхлопных газов, поскольку все воздуховоды и компоненты расположены относительно далеко от двигателя и не могут быстро реагировать на изменение скорости рециркуляции ОГ.

Гибридная (комбинированная) EGR объединяет в одном двигателе систему рециркуляции ОГ высокого и низкого давления. Иногда такой тип называют двухконтурной системой EGR.

Гибридная EGR сочетает в себе преимущества обоих систем, переключаясь между ними в зависимости от частоты вращения и крутящего момента, а также позволяет турбонагнетателю работать с высоким КПД на любом режиме.

Недостаток двухконтурной EGR - большая стоимость, сложность и для нее требуется большее пространство для размещения (обусловленные большим количеством компонентов), а также потенциальными проблемами с управлением скоростью рециркуляции ОГ в зависимости от режима работы двигателя. Алгоритм управления становится довольно сложным, поскольку необходимо управлять несколькими исполнительными механизмами (клапаном рециркуляции ОГ высокого/низкого давления, дроссельной заслонкой на впуске/выпуске и лопатками турбины/перепускным клапаном) для подачи необходимого количества воздуха и ОГ в цилиндры на различных режимах.

Тепловым двигателем называют машину, в ходе работы которой внутренняя энергия переходит в механическую. Самую простую модель такой машины можно представить в виде металлического цилиндра и плотно пригнанного поршня, который может двигаться вдоль цилиндра.

Одним из самых распространённых видов теплового двигателя, который мы встречаем в жизни, является двигатель внутреннего сгорания (ДВС). Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Легко догадаться, что отсюда и пошло его название.

В данном уроке мы рассмотрим устройство двигателя внутреннего сгорания и схему его работы.

Устройство двигателя внутреннего сгорания

Тепловые двигатели такого типа работают на жидком и газообразном топливе. Этим топливом могут быть нефть, бензин, керосин, различные горючие газы.

На рисунке 1 изображена схема простейшего двигателя внутреннего сгорания в разрезе.

Двигатель представляет собой прочный металлический цилиндр. Внутри этого цилиндра имеется подвижный поршень 3. Поршень соединения шатуном 4 с коленчатым валом 5.

В верхней части двигателя расположены два клапана 1 и 2. Когда двигатель работает, они автоматически открываются и закрываются в определенные нужные моменты.

Через клапан 1 в цилиндр двигателя поступает горючая смесь. Она воспламеняется с помощью свечи 6.

Горючая смесь — это смесь горючих газов, частиц жидкого топлива и паров топлива с воздухом (кислородом).

Отработавшие газы выпускаются через клапан 2.

Периодически в цилиндре происходит сгорание горючей смеси. Например, сгорает смесь паров бензина и воздуха. Образуются газообразные продукты сгорания. Их температура при этом достигает высоких значений — $1600-1800 \degree C$. В результате этого резко увеличивается давление на поршень.

Эти газы (продукты сгорания) толкают поршень. При движении поршня двигается и коленчатый вал. Таким образом газы совершают механическую работу. Т. е., часть внутренней энергии газов перешла в механическую энергию. Следовательно, внутренняя энергия газов уменьшилась — они начинают охлаждаться.

Мертвые точки, ход поршня и такты двигателя

Для того чтобы более подробно рассмотреть схему работы данного двигателя, нам понадобятся новые определения.

Поршень может двигаться внутри цилиндра. В устройстве самого простого вида, который мы рассматриваем, он может двигаться вверх и вниз.

Мёртвые точки — это крайние точки положения поршня в цилиндре.

Ход поршня — это расстояние, которое проходит поршень от одной мертвой точки до другой.

Рассматриваемые нами двигатели внутреннего сгорания называют четырехтактными.

Четырехтактный двигатель — это двигатель, в котором один рабочий цикл происходит за четыре хода поршня (за четыре такта).

Один такой такт двигателя или ход поршня происходит за половину оборота коленчатого вала.

Схема работы двигателя внутреннего сгорания: четыре такта

Теперь давайте подробно рассмотрим все четыре такта работы двигателя (рисунок 2).

Рисунок 2. Схематическое изображение работы двигателя внутреннего сгорания

Первый такт (рисунок 2, а):

  • При повороте коленчатого вала в самом начале такта поршень начинает двигаться вниз
  • Объем над поршнем увеличивается
  • В цилиндре образуется разрежение
  • Открывается клапан 1. В цилиндр поступает горючая смесь
  • Цилиндр заполняется горючей смесью. Клапан 1 закрывается

Второй такт (рисунок 2, б):

  • Вал продолжает поворачиваться, поршень теперь двигается вверх
  • Таким образом поршень сжимает горючую смесь
  • Поршень доходит до верхней мертвой точки
  • Сжатая горючая смесь воспламеняется от электрической искры (свеча 6) и сгорает

Третий такт (рисунок 2, в):

  • При сгорания смеси образуются газы. Они давят на поршень — толкают его вниз
  • Под действием этих расширяющихся нагретых газов двигатель совершает работу. Поэтому,

Третий такт двигателя — это рабочий ход.

  • Поршень двигается вниз. Его движение передается шатуну и коленчатому валу
  • Получив сильный толчок, коленчатый вал с маховиком продолжают вращение по инерции. При этом они приводят в движение поршень при последующих тактах

Заметьте, что на втором и третьем тактах двигателя клапаны закрыты.

  • В конце такта открывается клапан 2. Продукты сгорания начинают выходить из цилиндра в окружающую среду

Четвертый такт (рисунок 2, г):

  • Идет выход продуктов сгорания из цилиндра (клапан 2 открыт)
  • Поршень движется вверх
  • В конце этого такта клапан 2 закрывается

Цикл двигателя состоит из четырех тактов:
впуск
сжатие
рабочий ход
выпуск

Создание и применение двигателя внутреннего сгорания

Четырехтактный двигатель внутреннего сгорания рассмотренного нами вида изобрел немецкий инженер Рудольф Дизель (рисунок 3).


Рисунок 3. Рудольф Кристиан Карл Дизель (1858 — 1913)

Двигатели внутреннего сгорания имеют очень широкое применение. В ходе их усовершенствования, в мире появлялись новые средства передвижения. Например, автомобили, мотоциклы, самолеты, вертолеты, космические корабли, ракеты, суда на воздушной подушке.

В автомобилях чаще всего стоят четырехцилиндровые двигатели внутреннего сгорания. В каждом цилиндре по очереди происходит рабочий ход. Поэтому коленчатый вал постоянно получает энергию от одного из поршней.

Существуют и двигатели с другим количеством цилиндров. Многоцилиндровые двигатели лучше обеспечивают равномерность вращения вала и имеют большую мощность.

Огнестрельное оружие является простейшим примером ДВС. Цилиндром является ствол оружия, а поршнем — выбрасываемые из оружия пули или снаряды.

Использование ДВС обеспечило быстрый прогресс в военной индустрии: были разработаны танки, истребители, подводные лодки.

В настоящее время двигатели внутреннего сгорания установлены практически на каждом виде транспорта, которым мы пользуемся. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

Ве́рхняя мёртвая то́чка (ВМТ) — положение поршня в цилиндре двигателя внутреннего сгорания, соответствующее максимальному расстоянию между любой точкой поршня и осью вращения коленчатого вала (условно начальное положение коленчатого вала, ноль градусов поворота кривошипа).

Нижняя мёртвая то́чка — положение поршня в цилиндре, соответствующее минимальному расстоянию между любой точкой поршня и осью вращения коленчатого вала.

Ход поршня, при котором газ не совершает работы, называется холостым ходом.

Рабочий ход – ход поршня под давлением газов, образующихся при сгорании рабочей смеси, движущийся от В.М.Т. (верхней мертвой точки) к Н.М.Т. (нижней мертвой точке).

Поступление горючей смеси в цилиндр, ее сжатие, расширение при сгорании и выпуск отработавших газов из цилиндра, т. е. совокупность всех процессов, происходящих в цилиндре при работе двигателя, называется рабочим циклом.

Шату́н (иногда ещё называют тяговое дышло) — деталь, соединяющая поршень и шатунную шейку коленчатого вала или движущих колёс паровоза. Служит для передачи возвратно-поступательных движений поршня к коленчатому валу или к колёсам для преобразования во вращательное движение.

Коленчатый вал — деталь (или узел деталей в случае составного вала) сложной формы, имеющая шейки для крепления шатунов, от которых вал воспринимает усилия и преобразует их в крутящий момент.

Маховик (маховое колесо) — массивное вращающееся колесо, использующееся в качестве накопителя (инерционный аккумулятор) кинетической энергии.

Свеча зажигания — устройство для воспламенения топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, накаливания, каталитические, полупроводниковые поверхностного разряда, плазменные воспламенители и др.

Система зажигания - это совокупность всех приборов и устройств, обеспечивающих появление электрической искры, воспламеняющей топливовоздушную смесь в цилиндрах двигателя внутреннего сгорания в нужный момент.

Если двигатель совершает два такта: первый такт – рабочий ход, второй такт – холостой ход (процесс сжатия горючей смеси), то его называют двухтактным.

В четырехтактном двигателе между тактом – рабочим ходом и тактом – сжатием горючей смеси добавляется еще два такта: выпуск отработанных газов и впуск горючей смеси.

Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):

Обязательная литература:

  1. Ефимов С.И., Алексеев В.П. Двигатели внутреннего сгорания. М., 2003
  2. Перельман Я.А. Занимательная физика. Книга 2. М.:Наука, 1982г.
  3. Энергетические установки: Системы поршневых и комбинированных двигателей. Учебник для вузов по специальности "Двигатели внутреннего сгорания"/ С. И. Ефимов, Н. А. Иващенко, В. И. Ивин и др.; Под. общ. ред. А. С. Орлина, М. Г. Круглова – 3-е изд., перераб. и доп. – М.: Высш. шк., 1986 г. – 352 с.: ил.

Дополнительные источники:

Теоретический материал для самостоятельного изучения

Во всех тепловых двигателях происходит преобразование тепловой энергии, связанной с движением микрочастиц, составляющих вещество в механическую энергию. Устройства тепловых двигателей непрерывно совершенствуются.

Каковы особенности тепловых двигателей разных типов, которые необходимо учитывать для оценки возможности их применения?

Все тепловые двигатели можно разделить на два класса – турбинные и поршневые. В турбинных двигателях тепловая энергия вначале преобразуется в кинетическую энергию газовой струи, для чего используются сопла, через которые расширяется горячий газ. Этот горячий газ может образовываться в результате кипения воды – паровые турбины, или в результате сгорания топлива – газовые турбины. Поток газа, имеющий большую скорость, направляется на лопасти турбины и, отдавая им энергию, раскручивает вал турбины.

Вал турбины может непосредственно приводить в движение какие-либо механизмы, например, колеса транспорта или винт самолета, или при помощи генератора вырабатывать электрическую энергию, что происходит на теплоэлектростанциях.

Значительно сложнее устройство поршневых двигателей, с которых начался технический прогресс в теплоэнергетике. Основу таких двигателей составляют цилиндр и поршень. Подробное описание дано в уроке 7. Но нагревать и охлаждать газ через стенки цилиндра, не эффективно. Вместо этого используется один из двух способов:

1) газ нагревается в отдельном устройстве, после чего подается в цилиндр. Такой способ реализован в паровом двигателе.

2) топливо в виде смеси газов, или пузырьков жидкости, смешанных с воздухом, (горючая смесь) вводится внутрь цилиндра, и далее процесс сгорания также происходит внутри цилиндра. Образовавшийся в результате сгорания горячий газ, расширяясь, приводит в движение поршень. Такие двигатели называются двигателями внутреннего сгорания. Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

Чтобы результат работы двигателя сводился к вращению какого-либо вала, что чаще всего требуется от двигателя, используется механизм, состоящий из шатуна и коленчатого вала. Эти элементы изображены на рисунках. Действие шатуна и коленчатого вала подобно действию ног велосипедиста и педалей. Для замыкания цикла необходим обратный ход поршня. Такой ход поршня, при котором газ не совершает работы, называется холостым ходом. Механическая энергия запасается в виде кинетической энергии вращения массивного колеса – маховика, связанного с валом двигателя. При такой работе возникают пульсации, для уменьшения которых вводят несколько цилиндров с одним коленчатым валом.


В двигателях внутреннего сгорания горючая смесь перед воспламенением сжимается, что происходит во время обратного хода поршня.

Это обеспечивает более эффективную работу двигателя. После сжатия горючая смесь воспламеняется, и начинается рабочий ход поршня. По способу воспламенения двигатели внутреннего сгорания делятся на два типа. В двигателях, включающих в себя систему зажигания, воспламенение горючей смеси происходит под воздействием искры, возникающей вследствие электрического разряда в запальной свече.

В таких двигателях используется топливо из легких фракций нефти (бензин) или природный газ, а степень сжатия поршнем невелика (6 – 8 раз). В двигателях другого типа – дизельных двигателях (или просто дизелях) используется горючее из более тяжелых фракций нефти (дизельное топливо), а степень сжатия существенно выше (15 – 20 раз). Воспламенение топливной смеси в дизельных двигателях происходит вследствие того, что при сжатии газ нагревается, соответствующий процесс близок к адиабатному процессу.

Двигатели внутреннего сгорания в зависимости от способа вывода отработанных газов и ввода горючей смеси делятся на два типа: двухтактные и четырехтактные. Каждый такт соответствует половине оборота коленчетого вала.

Двухтактные: первый такт – рабочий ход, второй такт – холостой ход (процесс сжатия горючей смеси)

В четырехтактном двигателе между тактом – рабочим ходом и тактом – сжатием горючей смеси добавляется еще два такта. Выпуск отработанных газов осуществляется при движении поршня с уменьшением рабочего объема цилиндра (такт аналогичный такту, в котором происходит сжатие смеси). Впуск горючей смеси осуществляется при движении поршня с увеличением рабочего объема (такт, аналогичный такту рабочего хода).

Зачем нужно столько типов двигателей? Оказывается, что универсального наилучшего двигателя нет, каждый тип обладает определенными достоинствами и недостатками. Каковы же эти критерии оценки?

  1. Экономичность. Наиболее экономичными являются дизельные двигатели. Четырехтактные двигатели более экономичны, чем двухтактные.
  2. Максимально достижимая мощность. По этому показателю выделяются турбинные двигатели.
  3. Мощность на единицу веса (особенно для совместно движущихся). Для большегрузов – дизельные; для легкого транспорта – бензиновые, двухтактные и четырехтактные (в зависимости от веса).
  4. Универсальность топлива. По этому показателю выгодно отличаются двигатели, где используется водяной пар – паровые турбины (т.к. запасы нефти истощаются).
  5. Износ механизмов. Выигрывают турбинные по сравнению с поршневыми.

• Тепловые двигатели подразделяются на турбинные и поршневые.

• Поршневые двигатели подразделяются на паровые двигатели и двигатели внутреннего сгорания.

• Двигатели внутреннего сгорания подразделяются на двигатели с системой зажигания и дизельные двигатели.

• Кроме того, двигатели внутреннего сгорания подразделяются на двухтактные двигатели и четырехтактные двигатели.

• Каждый тип двигателя обладает своими достоинствами и недостатками, определяющими целесообразность его использования для тех или иных целей.

• Критериями оценки эффективности применения разных видов двигателей являются: экономичность, максимально достижимая мощность, мощность на единицу веса, универсальность топлива и износ механизмов.

Примеры и разбор решения заданий тренировочного модуля:

Правильный вариант: Во всех тепловых двигателях происходит преобразование тепловой энергии, связанной с движением микрочастиц, составляющих вещество в механическую энергию.

Задание 2. Один моль одноатомного идеального газа участвует в циклическом процессе, график которого изображён на TV−диаграмме.


Выберите два верных утверждения на основании анализа представленного графика.

1) Давление газа в состоянии 2 меньше давления газа в состоянии 4.

2) Работа газа на участке 2–3 отрицательна.

3) На участке 1–2 давление газа уменьшается.

4) На участке 4–1 работа газа отрицательна.

5) Работа, совершенная газом на участке 1−2 больше работы, совершаемой внешними силами над газом на участке 4−1.

Правильный вариант: 4); 5).

Подсказка: Перерисуйте график цикла в осях p,V. Вспомните, что на графиках процессов в осях p,V работа вычисляется как площадь под графиком процесса.

Читайте также: