Лямбда зонд показывает отрицательное напряжение

Обновлено: 02.07.2024

В интернете мне очень часто попадаются криво переведенные статьи о трактовке показаний различных датчиков, причем их репостят все подряд без разбора и тем самым еще больше путают народ. Поэтому я нашел и перевел правильную статью о топливной коррекции (Fuel Trim), постарался сделать это близко к тексту но не теряя при этом смысл, поэтому местами я дополнял перевод своим текстом. Итак, поехали.

На форумах часто задают вопросы по поводу топливной коррекции и у меня даже есть некоторое количество электронных писем с просьбами осветить этот вопрос. Многие отмечают топливную коррекцию PIDS (идентификаторы параметра) на показаниях в реальном времени (datastream) своих сканирующих устройств и интересуются для чего она.

Итак, что такое топливные коррекции и что они делают ? Надеюсь мы сможем прояснить все недопонимания. Правильное понимание топливных коррекций может привести к ускорению диагностики и предупредить вас о будущих проблемах с вашим автомобилем.

В основе своей топливные коррекции – процент изменения в топливоподаче во(по) времени. Для того, чтобы двигатель работал хорошо соотношение воздух/топливо должно оставаться в границах небольшого окна 14.7/1. Такое соотношение должно сохраняться в этой зоне под воздействием всех изменяющихся условий с которыми двигатель сталкивается каждый день: холодный пуск (хотя по мне на холодном пуске явно не 14.7/1, но это оставим на совести автора), холостой ход в условиях длительных движений в пробках при движении по трассе и т.д.

Итак, компьютер двигателя пытается сохранить правильное соотношение воздух/топливо посредством точной настройки количества топлива поступающего в двигатель. В то время, как добавляется или уменьшается подача топлива, кислородный датчик следит за тем сколько кислорода в выхлопе и сообщает об этом ЭБУ. Кислородные датчики могут быть представлены как глаза ЭБУ, которые следят за смесью кислорода в выхлопе. ЭБУ следит за этими входными данными от горячих кислородных датчиков безостоновочно в замкнутом цикле. Если кислородный датчик информирует ЭБУ, что выхлопная смесь бедная, ЭБУ добавляет топливо путем увеличения времени открытия форсунки, для компенсации. И наоборот, если датчик кислорода информирует ЭБУ о том, что выхлопная смесь богатая, ЭБУ уменьшает время открытия форсунок, уменьшая тем самым подачу топлива для уменьшения обогащения смеси.

Эти изменения – добавление или уменьшение подачи топлива – называются Топливной Коррекцией или Fuel Trim. На самом деле, хоть датчики и называются кислородными, показывают они состояние топливной смеси. Изменения в напряжении кислородного датчика вызывают прямые изменения топливной смеси. Кратковременная топливная коррекция (STFT) относится к мгновенным изменениям топливной смеси – несколько раз в секунду. Долгосрочная топливная коррекция (LTFT) показывает изменения топливной смеси за длительный промежуток времени на основе показаний кратковременной коррекции (среднее значение за длительное время). Отрицательная топливная коррекция (отрицательные значения по сканеру) свидетельствует об обеднении смеси, а положительная топливная коррекция об обогащении соответственно. (Т.е. если лямбда постоянно видит бедную смесь, то она постоянно обогащает и это отразится на LTFT плюсовыми значениями).

Представим себе такую ситуацию – вы едете от пляжа, который на уровне моря в горы. За короткие промежутки времени вы можете несколько раз подниматься и опускаться вверх-вниз по холмам. Однако на длительном промежутке времени вы на самом деле плавно поднимаетесь от самой низкой точки горы до ее вершины, т.е. едете постоянно вверх, несмотря на временные перепады. Так можно представить себе краткосрочную и долгосрочную коррекции. STFT – кратковременные подъемы и опускания, а LTFT – то, что происходит за длительный промежуток времени в итоге.



Нормальная кратковременная коррекция



Обедненная смесь. Идет ее обогащение системой машины.

Краткосрочная топливная коррекция STFT начнет немедленно увеличиваться, чтобы показать, что компьютер добавляет топливо. Когда компьютер добавляет топливо, это становится заметно кислородному датчику и он следит таким образом до тех пор, пока кислородный датчик не покажет, что смесь больше не бедна и правильное соотношение топливо/воздух достигнуто. ЭБУ будет поддерживать повышенное добавление топлива до тех пор, пока подсос воздуха не будет устранен. Диагностический прибор при этом будет показывать положительные двузначные значения STFT, что будет свидетельствовать о том, что ЭБУ добавляет слишком много топлива для нормальной работы двигателя. Через некоторое время LTFT будет также показывать это увеличение как долгосрочное (постоянное на долгом промежутке времени). А если подсос воздуха слишком большой, то компьютер не сможет добавить достаточно много топлива, чтобы сбалансировать смесь и достичь правильного соотношения воздух/топливо. Корректировка достигнет своего максимального значения, обычно это 25%. Затем выскочит код ошибки, говорящий о том, что двигатель работает на слишком обедненной смеси (ошибка P0171 или P0174) и максимальный порог возможной кратковременной коррекции STFT уже превышен. И обратная ситуация будет, если двигатель будет работать на сверхобогащенной смеси из-за утечки топлива (например льют форсунки), появятся ошибки P0172 или P0175.



Обогащенная смесь. Идет ее обеднение мозгами машины.

Если вы будете ориентироваться на коды, возникающие в результате таких ложных состояний смеси и не сопоставите это все со всеми данными по кислородным датчикам (и от себя добавлю – обязательно смотрите на внешний вид налета на электродах свечей), то вы можете поставить неверный диагноз.

Также, на V-образных моторах на каждом выпускном тракте каждой из голов обычно стоит свой кислородный датчик и идет своя топливная коррекция для каждой головы (показания по Bank 1 и Bank 2). Если у вас 4х-цилиндровый двигатель, то у вас всего один банк данных – Банк 1. На V-образных моторах в этом смысле поудобнее по причине того, что если лямбда с одной стороны неисправна и врет вы можете сузить круг потенциальных причин проблемы ориентируясь на показания второго банка данных – Bank 2.

Всем привет. Недавно узнал,что оказывается, опорное U на лямбду кроме 0.45В еще бывает 1.5В (SIMOS) , а также бывает и 5В (американцы). Сама форма осциллограмм, я так понимаю та же. Но при этом абсолютные значения U в мин и мах НЕ будут равны 0.1- 0.9 В . То есть для SIMOS рабочий диапазон будет прим 1В-2В . А то бывает люди смотрят тем же мультиметром сигнал лямбды,а там 1.5 постоянно. А они ждут совсем другого.

опорное на лямбде может быть очень разным, а может и вовсе отсутствовать. кстати, называть его опорным не совсем корректно, но что уж.

диапазон сигнала зависит не от опорного напряжения, а от способа подключения и измерения.

например: серый провод датчика изолирован от массы, и на нем 5В. соответственно, при измерении между серым и черным проводом - амплитуда будет вполне себе обычная от 0 до 1В (ну или там от 0.1 до 0.9 - не суть), но при измерении относительно массы - будет уже от 5 до 6В.

шаран с симосом - там ИМХО на сером проводе тоже что-то есть (а может и нет - не помню уже), но опорное - да, полтора вольта, но после начала работы датчика - колеблется оно примерно в том же диапазоне что и у других - от 0 до 1В, ну или есть небольшое смещение вверх, скажем от 0.3 до 1.2В (точно не помню, повторюсь)

амплитуда сигнала лямбда-зонда - она зависит от конструкции самого датчика. то есть вот обычная циркониевая лямбда - это 1В-датчик, и ни 2 ни 5В он не выдаст. просто вот конструктивно. как человек не может прыгнуть на 4 метра в высоту, например.

для титановых датчиков - интереснее, там датчик по сути резистор, и напряжение на него подается от ЭБУ, а он его просаживает, изменяя сопротивление в зависимости от содержания кислорода. и амплитуда сигнала - зависит от подаваемого на датчик опорного напряжения, и обычно это 5В.

Спасибо за отзыв. Но тут я скорее запутался.

"серый провод датчика изолирован от массы, и на нем 5В" - Напряжение это характеристика двух точек?

Спрошу по другому, тогда ,наверное понятнее будет. Все циркониевые узкополосные датчики меряются двумя щупами. Так? Провод сигнальный и провод массовый .Для конкретики возьмем что вы и давали - " Шаран с Симосом".Итак,подключили мы осциллограф,заводим ХОЛОДНЫЙ двигатель. Лямбда пока не работает,но на экране мы уже видим некую горизонтальную линию. Это напряжение отлично от нуля и , как я подозреваю оно же и "опорное" .Так? Вот и вопрос номер 1 : Какой уровень напряжения (в вольтах) я вижу в этот момент на экране осциллографа?
"Шаран с Симосом" прогрелся, осциллограмма пошла гулять вверх-вниз. Вопрос номер 2 : Какое максимальное и минимальное значение (в вольтах) будет у этой осциллограммы? Считаем что лямбда рабочая.

И спрошу даже еще более грубо. Допустим нету осциллографа а я таки хочу проверить живость лямбды на "Шаране с Симосом".Тыкаю обычным мултиметром. Какие цифры на экране я должен увидеть,чтобы понять что датчик скорее жив,чем мертв?

PS Про титановые датчики. А разве они еще эксплуатируются? Насколько я знаю они "не пошли" в массы еще лет 20 назад.
С наступающим.

Boring писал(а): Спасибо за отзыв. Но тут я скорее запутался.
"серый провод датчика изолирован от массы, и на нем 5В" - Напряжение это характеристика двух точек?

можно измерять относительно минуса аккумулятора и относительно сигнальной массы датчика. потенциал сигнальной массы может отличаться от нуля.

Спрошу по другому, тогда ,наверное понятнее будет. Все циркониевые узкополосные датчики меряются двумя щупами. Так? Провод сигнальный и провод массовый .Для конкретики возьмем что вы и давали - " Шаран с Симосом".Итак,подключили мы осциллограф,заводим ХОЛОДНЫЙ двигатель. Лямбда пока не работает,но на экране мы уже видим некую горизонтальную линию. Это напряжение отлично от нуля и , как я подозреваю оно же и "опорное" .Так? Вот и вопрос номер 1 : Какой уровень напряжения (в вольтах) я вижу в этот момент на экране осциллографа?
"Шаран с Симосом" прогрелся, осциллограмма пошла гулять вверх-вниз. Вопрос номер 2 : Какое максимальное и минимальное значение (в вольтах) будет у этой осциллограммы? Считаем что лямбда рабочая.

И спрошу даже еще более грубо. Допустим нету осциллографа а я таки хочу проверить живость лямбды на "Шаране с Симосом".Тыкаю обычным мултиметром. Какие цифры на экране я должен увидеть,чтобы понять что датчик скорее жив,чем мертв?

полтора вольта "опорное" на холодном двигателе, ну и рабочий диапазон - как у любого другого циркониевого датчика.

PS Про титановые датчики. А разве они еще эксплуатируются? Насколько я знаю они "не пошли" в массы еще лет 20 назад.

так симосы с полуторавольтовым опорным тоже лет 20 как не производятся а в изначальном вопросе тип датчика не указан.

но вообще проверять лямбду нужно и по амплитуде, и по скорости переключения, а опроное - оно вообще как-бы нафиг не интересно никому. потому что при исправном датчике оно значения не имеет. а принцип работы и амплитуда - зависят от "химии" датчика.

в идеале должно быть так, как задумал разработчик. потому и существуют датчики и с заземленным серым проводом, и с изолированным.

А чтт скажете о смещении работы датчика в минус. Т.е эбу хочет видеть от датчика 0-1 в. А он по осциллографу прыгает -0.5 + 0.3 в.

Соответственно для блока 0.3 вольта это бедно , а датчик нормально реагирует на обеднение и обогащение. После замены лямбды - Все пришло в норму?

Я так полагаю масса внутри датчика окислилась?

датчик в мусорку. а что уж там с ним - вообще не важно.

окисленная масса даст слабую нагрузочную способность, то есть понизит напряжение, но никак не перетянет его в минус.

датчик кислорода - это химический гальванический элемент. как батарейка. только работает на разности содержания кислорода. и что там стряслось с этим керамическим "электролитом" - нужно спрашивать у химиков. впрочем, зачем? ну не работает датчик. его нельзя же починить? так зачем докапываться до точной физики и химии проблемы-то? что это даст и что изменит?

это примерно то же самое, как проверять напряжение АКБ у машины которую на шнурке притянули, и стартер только квакает. вот какая разница - там 10 вольт или уже 8? один черт на зарядку, а там посмотрим. в случае лямбды - "зарядки" не существует, значит сразу замена.

хотя, стоп! из чистого онанизма - можно последовательно прикрутить севшую батарейку же! она сместит напряжение в плюс. только нужно тщательно подбирать по напряжению.

Данная неисправность возникает из-за внутренней или внешней разгерметизации лямбда зонда.Подробнее в статье Постоловского о лямбда зондах.Иногда встречается неисправность лямбда зонда (lambda), вызывающая появление выбросов напряжения отрицательной полярности.
В случае появления такой неисправности, расход топлива очень сильно возрастает, приемистость двигателя значительно снижается, при резких перегазовках наблюдаются выбросы сажи из выхлопной трубы, рабочая поверхность изоляторов свечей зажигания покрывается сажей.
Неисправность возникает вследствие внутренней, а иногда и внешней разгерметизации лямбда зонда. Чувствительный элемент зонда сравнивает уровень содержания кислорода в отработавших газах и в атмосферном воздухе. В случае возникновения значительной разности уровней содержания кислорода в камере с атмосферным воздухом и в отработавших газах, датчик генерирует напряжение ~1V. Полярность этого напряжения зависит от того, в какой из камер снизился уровень содержания кислорода.
В исправной системе уровень содержания кислорода изменяется только со стороны отработавших газов и только в сторону уменьшения. Уровень содержания кислорода в камере с атмосферным воздухом при этом оказывается значительно выше уровня содержания кислорода в выхлопных газах, вследствие чего зонд генерирует напряжение 1V положительной полярности.
В случае разгерметизации лямбдазонда, в камеру с атмосферным воздухом проникают отработавшие газы с низким содержанием кислорода. На режиме торможения двигателем (закрытая дроссельная заслонка при вращении двигателя с высокой частотой, подача топлива при этом отключена), в выхлопную систему двигателем выбрасывается почти чистый атмосферный воздух. В таком случае, уровень содержания кислорода в выхлопной системе резко возрастает и уровень содержания кислорода в атмосферной камере зонда оказывается значительно ниже уровня содержания кислорода в отработавших газах, вследствие чего зонд генерирует напряжение 1V отрицательной полярности.
Блок управления двигателем в таком случае считает лямбда зонд (lambda) исправным, так как вскоре после пуска двигателя и прогрева, датчик отклонил опорное напряжение и снизил его до ~0V. Выходное напряжение зонда напряжением ~0V свидетельствует о близком уровне содержания кислорода в отработавших газах и в разгерметизированой атмосферной камере зонда.
На блок управления двигателем поступает сигнал зонда низкого уровня, что является для него свидетельством обедненной топливовоздушной смеси.
Вследствие этого, блок управления двигателем обогащает топливовоздушную смесь. Таким образом, разгерметизация лямбда зонда приводит к значительному обогащению топливовоздушной смеси. При этом многие системы самодиагностики выявить данную неисправность не могут

Как подключить телефон к автомагнитоле и включить музыку в машине

Узнай первым о выходе нового полезного контента

© 2010 - 2021 Все права защищены. Любое копирование материала с нашего сайта строго запрещено без предварительного согласия со стороны администрации.

© 2010 - 2021 Все права защищены. Любое копирование материала с нашего сайта строго запрещено без предварительного согласия со стороны администрации.

Идеального смесеобразования не бывает — состав смеси в цилиндрах в каких-то пределах колеблется. Представим, что в момент времени А, когда сигнал датчика кислорода находится в пределах 0,35–0,4 В, блок управления двигателем оценил смесь как бедную (см. рис. 1). С этого момента он постепенно увеличивает время открытого состояния форсунок — смесь обогащается, напряжение с датчика растет. Но состав смеси мгновенно измениться не может — напряжение сначала понижается примерно до 0,2 В, чему соответствует момент времени Б. Затем смесь продолжает обогащаться, пока в точке В (0,55–0,6 В) контроллер, оценив смесь как богатую, не начнет постепенно уменьшать время открытого состояния форсунок. Смесь обеднится, пока напряжение вновь не достигнет значения 0,35–0,4 В в точке Д. Но до этого сигнал с датчика кислорода успеет подняться до 0,8 В (точка Г). После ситуации Д цикл вновь повторится. Теоретический размах колебаний напряжения — от 0 до 1 В, реальный — примерно 0,2–0,8 В. У поработавшего датчика считают допустимым 0,3–0,7 В.

Важную роль играют еще два фактора — время реакции датчика на изменение состава смеси и форма его сигнала. Последний в идеале должен выглядеть на экране осциллографа, как показано на рис. 1: сигнал почти синусоидальный. В этом случае средний состав смеси стехиометрический (l = 1), а его отклонения, как вы уже поняли, не превышают ±1%.

Как часты подобные неисправности? Увы, они составляют около 20% всех отказов — нередко их симптомы довольно запутаны, что требует индивидуального подхода.

А теперь — о скорости реакции датчика на изменение состава отработавших газов. Она, конечно, зависит от места расположения датчика в выпускном тракте. Но существенное влияние на быстроту реакции оказывает старение измерительного элемента, а также отложения на нем или в окнах защитного колпачка продуктов сгорания, особенно масла.

Чтобы уточнить время реакции датчика, прогреем двигатель и, подключив к датчику мотор-тестер, проследим за показаниями при резком открытии дросселя (рис. 4). Если отставание велико (больше 0,2 с), стоит проверить состав отработавших газов четырехкомпонентным газоанализатором (только он позволит объективно об этом судить, обнаружить возможный подсос воздуха и т.п.). О работоспособности датчика говорит стабильный, близкий к стехиометрическому состав смеси как на холостом ходу, так и при 3000 об/мин. Как ранее говорилось, допустимые отклонения l — не более ±1%. Даже если форма сигнала правильная, синусоидальная, но состав меняется сильнее — значит, датчик неисправен.

Уже на основании этих данных, меняется время впрыска на форсунках, чтобы состав смеси был оптимальным.

Соответственно, если датчик неисправен, то и двигателю придётся работать на неправильной смеси. Поэтому сегодня я вам расскажу, как этот датчик можно самому проверить.

Устройство датчика:

Чтобы начать проверять датчик, нужно хотя бы базового узнать, как он работает.

Данный датчик начинает корректно работать только при большой температуре, из-за этого в него устанавливают нагреватель, а сам его прикрепляют близко к двигателю.

Уже в этом случае датчик кислорода сможет правильно определять состав отработанных газов, и отправлять их системе.

Существует много различных датчиков кислорода, у каких-то нет нагревательного элемента, другие отличаются количеством проводов, но суть работы у них всë равно одна.

Читайте также: