Найти ранг матрицы а при различных значениях параметра лямбда

Обновлено: 02.07.2024

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям, а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r+1)-го порядка, внутри которого лежит выбранный минор r-го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы. Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r-го порядка, не равный нулю, то ранг матрицы равен r.

При способе элементарных преобразований используется следующее свойство:

- если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице ( r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум ( r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём ( r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум ( r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .

Используя эту теорему, отправляясь от любой матрицы A всегда можно прийти к такой матрице B , вычисление ранга которой не представляет затруднений. Для этого следует добиться, чтобы матрица B была трапециевидной.

Тогда ранг полученной матрицы будет равен числу строк в ней кроме строк, полностью состоящих из нулей.

Пример 5. Найти ранг матрицы

Решение. Подвергнем эту матрицу следующим преобразованиям. Ко второй строке прибавим третью, умноженную на - 2, а затем к третьей строке прибывам первую, умноженную на 2, и, наконец, из четвёртой вычтем первую. После этих трёх последовательно выполненных преобразований получим матрицу

Вычитая из четвёртой строки третью, а затем переставив местами вторую и третью строки, получаем матрицу

Получили трапециевидную матрицу. Ранг полученной матрицы равен трём (r=3), так как после вычёркивания последней строки, полностью состоящей из нулей, в ней останется три строки.

Желающие могут проверить это решение способом окаймляющих миноров (минор третьего порядка, находящийся в левом верхнем углу, не равен нулю, а все миноры четвёртого порядка равны нулю).

Задача 29. Доказать, что третий столбец матрицы является линейной комбинацией первых двух, и найти коэффициенты этой комбинации.

Решение. Во-первых, если вычислить определитель и обнаружить, что он равен 0, то этим самым уже доказана линейная зависимость столбцов. Однако требуется найти коэффициенты, поэтому запишем систему уравнений:

Прибавим удвоенное 1-е уравнение ко 2-му, и вычтем утроенное 1-е из 3-го.

отсюда видно, что , тогда .

Ответ. коэффициенты линейной комбинации равны 1 и 2.

Задача 30. Найти ранг матрицы .

Решение. Здесь есть невырожденный минор порядка 1, это любой ненулевой элемент. Также есть минор порядка 2, например


.

Чтобы выяснить, равен ранг 2 или 3, надо перейти к рассмотрению миноров 3 порядка, причём их можно рассматривать не все, а достаточно только окаймляющие, то есть содержащие уже найденный минор меньшего порядка.


поэтому ранг не равен 3, а остаётся равен 2, так как минор 2 порядка уже найден. Миноров 4 порядка в этой матрице нет, так как всего 3 строки. Итак, . Цветом закрашен базисный минор.

Ответ. .

Задача 31. Найти ранг матрицы

Решение. Из 2-й строки вычесть 1-ю, а из 3-й удвоенную 1-ю.

теперь из 3-й строки вычтем 2-ю .

Ниже главной диагонали получились нули.


Теперь лучше видно базисный минор порядка 3. Ранг = 3. Если бы оказалось, что последняя строка состоит из нулей, то тогда был бы ответ ранг матрицы = 2.

Ответ. .

Задача 32. Найти ранг матрицы. .

Решение.

Метод 1. Выбираем окаймляющие миноры, начиная от левого верхнего угла. Видно, что минор 2 порядка не равен 0, поэтому ранг больше или равен 2. .

Вычисляя минор 3 порядка (а он здесь единственный, это и есть сам определитель матрицы) видим, что он равен 0.

. Тогда ранг не равен 3.

, но при этом . Остаётся единственный вариант: .

Метод 2. Преобразуем матрицу к треугольному виду.

Вычитаем из 2-й строки 1-ю, и из 3-й удвоенную 1-ю.

Теперь 2-ю строку, умноженную на 0,5, прибавим к 3-й.

Теперь видно, что 3-я строка состоит из нулей, поэтому ранг не может быть равен 3. Минор 2-го порядка тоже сразу виден, это .

Ответ. .

Задача 33. Найти ранг матрицы .

Решение. Вычтем из 2-й строки 1-ю, а из 3-й удвоенную 1-ю.

теперь из 3-й вторую: .

Во-первых, сразу видно, что есть угловой минор порядка 2, отличный от нуля. Ближайший окаймляющий для него содержит столбец из нулей, однако это ещё не значит, что ранг не может быть равен 3. Если рассмотреть другой окаймляющий минор, а именно, состоящий из 1,2 и 4 столбцов, то увидим, что ранг равен 3.


Ответ. .

Задача 34. Найти ранг матрицы .

Решение.

Теперь 2-ю строку, домноженную на 10, прибавим к 3-й.

Итак, исходная матрица сводится к такой, в которой уже есть треугольная структура в первых трёх столбцах.


Очевидно, что обведённый минор равен 46, не равен 0. Он 3-го порядка, поэтому ранг равен 3.

Ответ. .

Задача 35. Найти ранг матрицы и базисный минор. .

Решение. Преобразуем матрицу:

Сначала из 2 строки вычитаем 1-ю, домноженную на 2, то есть вычитаем строку (2 4 6) а из 3-й 1-ю, домноженную на 5, т.е. строку (5 10 15). Затем к 3-й прибавляем 2-ю с коэффициентом 7.

Видно, что базисный минор не может быть в левом верхнем углу, потому что во 2-й строке два нуля. Зато можно найти минор 2 порядка, состоящий из частей 10и 3 столбца, либо 2 и 3-го.


Минор порядка 3, то есть сам определитель всей этой матрицы, равен 0, так как третий столбец содержит только нули. Поэтому ранг равен 2, а не 3. Ответ. .

Практики 5 (до № 46) и 6 (до № 57).

(неделя с 28 сентября по 4 октября).

Задача 36. Найти ранг матрицы .

Решение. Преобразуем матрицу. Ко второй строке прибавим 1-ю, а от 3-й отнимем удвоенную 1-ю.

теперь к третьей прибавим вторую, получим .

Ранг равен 3, так как есть невырожденный минор 3 порядка.

Ответ. .

Задача 36-А (вариант прошлой задачи, но с параметром).

Найти параметр , при котором ранг матрицы равен 2:

Решение.

Третья строка состояла бы из всех нулей, только если , то есть . Ответ. .

Задача 37. Найти ранг матрицы .

Решение. Преобразуем методом Гаусса к треугольной форме.

Видно, что 4-я строка из нулей, поэтому ранг не равен 4, то есть . Минор порядка 2 легко находится в верхнем левом углу, но угловой минор порядка 3 равен 0. Однако это ещё не значит, что ранг равен 2, ведь можно отступить к правому краю матрицы и взять минор с разрывом, из 1,2,4 столбцов, например такой:


Этот минор невырожденный, и он тоже является окаймляющим (ведь он полностью включает в себя квадрат, закрашенный жёлтым). Мы нашли базисный минор порядка 3. Также можно было рассматривать аналогичное в 1,2,5 столбцах, тоже минор порядка 3.

Ответ. .

Задача 38. Найти такие параметры , что ранг матрицы равен 1:

Решение. Вычтем из 2-го столбца удвоенный 1-й. Затем из 3-го утроенный 1-й.

Если и , то последний столбец состоит только из нулей, и ранг будет равен 1. Ответ. , .

Задача 39. Найти ранг матрицы.

Решение. Для удобства преобразования методом Гаусса, сначала поменяем местами 1 и 3 строки. Ещё можно сразу прибавить 3-ю строку к 4-й.

Дальше стандартным методом, обнулим всё ниже угла.

Для удобства вычислений домножим 2 строку на (-1), ранг при этом не меняется. Затем прибавим к 3 строке удвоенную 2-ю.

Теперь осталось прибавить к 4 строке удвоенную 3-ю.

. Видно, что получилась треугольная матрица, то есть определитель 4 порядка невырожденный. Поэтому .

Ответ. .

Задача 39-А. Найти значение параметра , при котором ранг матрицы был бы равен 3.

Решение. Выполняя преобразования, аналогичные тем, что в прошлой задаче, получим

. Только в том случае, когда , последняя строка состоит из нулей, и ранг равен 3, а не 4. Ответ. .

Задача 40. Найти , при котором ранг равен 2.

Решение. Пункт А).

Из 2-й строки вычли удвоенную 1-ю, из 3-й 4-кратную 1-ю.

Затем домножили 3-ю на 4, чтобы стало кратное число (20).

Затем из 3-й отняли 5-кратную 2-ю.

Видим, что независимо от и от последнего столбца, есть невырожденный минор в первых 3 столбцах. Поэтому ни при каком ранг не будет 2.

Б) Если нет 3-го столбца (по сравнению с прошлым пунктом), то удастся найти .

Последняя строка состоит из нулей при , т.е. .

Ответ. А) не существует Б) .

Обратная матрица.

Формула вычисления элементов обратной матрицы: .

1. Проверить невырожденность с помощью определителя.

2. Составить матрицу из дополняющих миноров Mij.

3. Изменить знаки в шахматном порядке, то есть домножить на (-1) i+ j , где i,j - номера строки и столбца.

4. Транспонировать полученную матрицу.

5. Поделить на определитель исходной матрицы.

Задача 41. Найти .

Решение. . Вывод: , существует обратная матрица.

Матрица из миноров: .

Матрица из алг. дополнений: .

Делим её на определитель, и записываем ответ: = .

Ответ. = .

Можно сделать проверку: = .

Задача 42. Найти обратную матрицу для .

Решение. 1). Проверяем определитель , так что обратная матрица существует.

2) Составляем матрицу из дополняющих миноров, то есть для каждой клетки вычёркиваем строку и столбец, остаётся подматрица порядка 1, то есть то число, которое напротив, как раз и является дополняющим минором. Получаем .

3) В шахматном порядке меняем знак там, где i+j нечётное.

Тем самым, мы переходим от к . Получили .

4) Транспонируем эту матрицу. .

5) Определитель был равен 1. Делить на 1 не обязательно, можно автоматически считать, что уже и так разделили.
Ответ. .

Решение. Пусть и .

По закону ассоциативности, можно записать такое равенство: . Но тогда получается , то есть .

Задача 44. Найти обратную матрицу .

Решение. Сначала ищем определитель. Так как матрица треугольная, то достаточно перемножить числа по диагонали. .

Строим матрицу, состоящую из дополняющих миноров.

Зачёркиваем ту строку и тот столбец, где находится элемент, и остаётся минор 2 порядка из 4 элементов.

На схеме показано, что именно надо зачеркнуть:


Теперь надо сменить знаки в шахматном порядке, т.е. переходим от миноров к алгебраическим дополнениям. Обведено красным, где надо менять знак. Ясно, что 0 остаётся 0, там знак менять нет смысла.


Получили: = .

Транспонируем эту матрицу, то есть бывшие строки запишем по столбцам.

= . И осталось разделить на .

Ответ. .

Задача 45. Найти обратную матрицу .

Решение. Найдём определитель


Найдём матрицу из дополняющих миноров к каждой из 9 клеток.

Меняем знаки в шахматном порядке, то есть там, где i+j нечётное.

Затем транспонируем эту матрицу.

= . Осталось только разделить на .

Ответ. .

Задача 46. Найти обратную матрицу .

Решение. Сначала вычислим определитель: .

Исходный определитель был равен 1, так что делить не нужно.

Ответ. .

Практика 6.

Задача 47. Найти обратную матрицу .

Решение. Сначала находим определитель.


Найдём матрицу из дополняющих миноров.

Меняем знаки в шахматном порядке, там, где i+j нечётное.

Затем транспонируем эту матрицу.

Ответ. = .

Задача 48. Матричным методом решить систему уравнений:

Решение. Запишем систему в виде: .

Обратите внимение, что основная матрица системы это та самая матрица, для которой мы нашли обратную в прошлой задаче.

Если у нас есть равенство , то , тогда .

Ответ. =1, =1, =0.

Матричные уравнения. Пусть А - квадратная матрица , - матрицы размера (чаще всего в таких задачах , то есть все рассматриваемые матрицы квадратные), причём - неизвестная матрица. Тогда определено умножение . Матрицу ищут таким образом. Домножим всё равенство слева на обратную матрицу : . Тогда , то есть .

Задача 49. Решить матричное уравнение , где .

Решение. Требуетсянайти , заметим, что матрица А тут в точности такая, для которой мы искали обратную ранее в начале параграфа. Так, можно использовать .

Ответ. . Проверка. = .

Задача 50. Решить матричное уравнение .

Решение.

Ответ. .

Задача 51. Найти обратную матрицу .

Решение. = .

меняем знаки в шахматном порядке: , транспонируем матрицу и делим на определитель:

Ответ. .

Задача 52. Найти обратную матрицу .

Решение.

Матрица треугольная, сразу видно, что определитель равен 2.

переходим к алгебраическим дополнениям:

делим на 2: . Ответ. .

Задача домашняя. Найти обратную матрицу .

Ответ. .

Системы линейных уравнений

Матричный метод.

, или . Слева домножим обратную матрицу:

, то есть , то есть . Получается, что все можно найти так: умножить обратную матрицу на правую часть.

Метод Крамера.

Пусть А - основная матрица системы линейных уравнений. Если удалить какой-либо i-й столбец основной матрицы и внести на это место правую часть, то получится некая новая квадратная матрица, обозначим её . Тогда верны следующие формулы для . для каждого i от 1 до n.

В нашем калькуляторе вы сможете бесплатно найти ранг матрицы онлайн с подробным решением и даже с комплексными числами. Вычисления выполняются путем приведения матрицы к ступенчатому виду с помощью элементарных преобразований.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции.

О методе

Чтобы вычислить ранг матрицы, нужно выполнить следующие шаги.

  1. Записывается матрица.
  2. Берется первый элемент в первом столбце и с его помощью зануляются элементы, расположенные ниже данного.
  3. Берется второй элемент во втором столбце и выполняются те же операции и т.д. до конца (иногда ключевые элементы в столбцах могут быть сдвинуты).
  4. Ранг матрицы равен количеству "ступенек" - числу линейно независимых уравнений.

Чтобы лучше всего понять нахождение ранга матрицы, введите любой пример, выберите "очень подробное решение" и изучите полученный ответ.

В данной статье пойдет речь о таком понятии, как ранг матрицы и необходимых дополнительных понятиях. Мы приведем примеры и доказательства нахождения ранга матрицы, а также расскажем, что такое минор матрицы, и почему он так важен.

Минор матрицы

Чтобы понять, что такое ранг матрицы, необходимо разобраться с таким понятием, как минор матрицы.

Минор k-ого порядка матрицы — определитель квадратной матрицы порядка k×k, которая составлена из элементов матрицы А, находящихся в заранее выбранных k-строках и k-столбцах, при этом сохраняется положение элементов матрицы А.

Проще говоря, если в матрице А вычеркнуть (p-k) строк и (n-k) столбцов, а из тех элементов, которые остались, составить матрицу, сохраняя расположение элементов матрицы А, то определитель полученной матрицы и есть минор порядка k матрицы А.

Из примера следует, что миноры первого порядка матрицы А и есть сами элементы матрицы.

Можно привести несколько примеров миноров 2-ого порядка. Выберем две строки и два столбца. Например, 1-ая и 2 –ая строка, 3-ий и 4-ый столбец.

При таком выборе элементов минором второго порядка будет - 1 3 0 2 = ( - 1 ) × 2 - 3 × 0 = - 2

Другим минором 2-го порядка матрицы А является 0 0 1 1 = 0

Предоставим иллюстрации построения миноров второго порядка матрицы А:

Минор 3-го порядка получается, если вычеркнуть третий столбец матрицы А:

0 0 3 1 1 2 - 1 - 4 0 = 0 × 1 × 0 + 0 × 2 × ( - 1 ) + 3 × 1 × ( - 4 ) - 3 × 1 × ( - 1 ) - 0 × 1 × 0 - 0 × 2 × ( - 4 ) = - 9

Иллюстрация, как получается минор 3-го порядка матрицы А:

Для данной матрицы миноров выше 3-го порядка не существует, потому что

k ≤ m i n ( p , n ) = m i n ( 3 , 4 ) = 3

Сколько существует миноров k-ого порядка для матрицы А порядка p×n?

Число миноров вычисляют по следующей формуле:

C p k × C n k , г д е С p k = p ! k ! ( p - k ) ! и C n k = n ! k ! ( n - k ) ! — число сочетаний из p по k, из n по k соответственно.

После того, как мы определились, что такое миноры матрицы А, можно переходить к определению ранга матрицы А.

Ранг матрицы: методы нахождения

Ранг матрицы — наивысший порядок матрицы, отличный от нуля.

Rank (A), Rg (A), Rang (A).

Из определения ранга матрицы и минора матрицы становиться понятно, что ранг нулевой матрицы равен нулю, а ранг ненулевой матрицы отличен от нуля.

Нахождение ранга матрицы по определению

Метод перебора миноров — метод, основанный на определении ранга матрицы.

Алгоритм действий способом перебора миноров:

Необходимо найти ранг матрицы А порядка p×n. При наличии хотя бы одного элемента, отличного от нуля, то ранг матрицы как минимум равен единице (т.к. есть минор 1-го порядка, который не равен нулю).

Далее следует перебор миноров 2-го порядка. Если все миноры 2-го порядка равны нулю, то ранг равен единице. При существовании хотя бы одного не равного нулю минора 2-го порядка, необходимо перейти к перебору миноров 3-го порядка, а ранг матрицы, в таком случае, будет равен минимум двум.

Аналогичным образом поступим с рангом 3-го порядка: если все миноры матрицы равняются нулю, то ранг будет равен двум. При наличии хотя бы одного ненулевого минора 3-го порядка, то ранг матрицы равен минимум трем. И так далее, по аналогии.

Найти ранг матрицы:

А = - 1 1 - 1 - 2 0 2 2 6 0 - 4 4 3 11 1 - 7

Поскольку матрица ненулевая, то ее ранг минимум равен единице.

Минор 2-го порядка - 1 1 2 2 = ( - 1 ) × 2 - 1 × 2 = 4 отличен от нуля. Отсюда следует, что ранг матрицы А не меньше двух.

Перебираем миноры 3-го порядка: С 3 3 × С 5 3 = 1 5 ! 3 ! ( 5 - 3 ) ! = 10 штук.

- 1 1 - 1 2 2 6 4 3 11 = ( - 1 ) × 2 × 11 + 1 × 6 × 4 + ( - 1 ) × 2 × 3 - ( - 1 ) × 2 × 4 - 1 × 2 × 11 - ( - 1 ) × 6 × 3 = 0

- 1 1 - 2 2 2 0 4 3 1 = ( - 1 ) × 2 × 1 + 1 × 0 × 4 + ( - 2 ) × 2 × 3 - ( - 2 ) × 2 × 4 - 1 × 2 × 1 - ( - 1 ) × 0 × 3 = 0

- 1 - 1 - 2 2 6 0 4 11 1 = ( - 1 ) × 6 × 1 + ( - 1 ) × 0 × 4 + ( - 2 ) × 2 × 11 - ( - 2 ) × 6 × 4 - ( - 1 ) × 2 × 1 - ( - 1 ) × 0 × 11 = 0

- 1 1 - 2 2 2 0 4 3 1 = ( - 1 ) × 2 × 1 + 1 × 0 × 4 + ( - 2 ) × 2 × 3 - ( - 2 ) × 2 × 4 - 1 × 2 × 1 - ( - 1 ) × 0 × 3 = 0

- 1 - 1 0 2 6 - 4 4 11 - 7 = ( - 1 ) × 6 × ( - 7 ) + ( - 1 ) × ( - 4 ) × 4 + 0 × 2 × 11 - 0 × 6 × 4 - ( - 1 ) × 2 × ( - 7 ) - ( - 1 ) × ( - 4 ) × 11 = 0

1 - 1 0 2 6 - 4 3 11 - 7 = 1 × 6 × ( - 7 ) + ( - 1 ) × ( - 4 ) × 3 + 0 × 2 × 11 - 0 × 6 × 3 - ( - 1 ) × 2 × ( - 7 ) - 1 × ( - 4 ) × 11 = 0

1 - 2 0 2 0 - 4 3 1 - 7 = 1 × 0 × ( - 7 ) + ( - 2 ) × ( - 4 ) × 3 + 0 × 2 × 1 - 0 × 0 × 3 - ( - 2 ) × 2 × ( - 7 ) - 1 × ( - 4 ) × 1 = 0

- 1 - 2 0 6 0 - 4 11 1 - 7 = ( - 1 ) × 0 × ( - 7 ) + ( - 2 ) × ( - 4 ) × 11 + 0 × 6 × 1 - 0 × 0 × 11 - ( - 2 ) × 6 × ( - 7 ) - ( - 1 ) × ( - 4 ) × 1 = 0

Миноры 3-го порядка равны нулю, поэтому ранг матрицы равен двум.

Ответ: Rank (A) = 2.

Нахождение ранга матрицы методом окаймляющих миноров

Метод окаймляющих миноров — метод, который позволяет получить результат при меньшей вычислительной работе.

Проще говоря, матрица, которая соответствует окаймляемому минору М, получается из матрицы, соответствующей окаймляющему минору M o k , вычеркиванием элементов одной строки и одного столбца.

Найти ранг матрицы:

А = 1 2 0 - 1 3 - 2 0 3 7 1 3 4 - 2 1 1 0 0 3 6 5

Для нахождения ранга берем минор 2-го порядка М = 2 - 1 4 1

Записываем все окаймляющие миноры:

1 2 - 1 - 2 0 7 3 4 1 , 2 0 - 1 0 3 7 4 - 2 1 , 2 - 1 3 0 7 1 4 1 1 , 1 2 - 1 3 4 1 0 0 6 , 2 0 - 1 4 - 2 1 0 3 6 , 2 - 1 3 4 1 1 0 6 5 .

Чтобы обосновать метод окаймляющих миноров, приведем теорему, формулировка которой не требует доказательной базы.

Если все миноры, окаймляющие минор k-ого порядка матрицы А порядка p на n, равны нулю, то все миноры порядка (k+1) матрицы А равна нулю.

Алгоритм действий:

Чтобы найти ранг матрицы, необязательно перебирать все миноры, достаточно посмотреть на окаймляющие.

Если окаймляющие миноры равняются нулю, то ранг матрицы нулевой. Если существует хотя бы один минор, который не равен нулю, то рассматриваем окаймляющие миноры.

Если все они равны нулю, то Rank(A) равняется двум. При наличии хотя бы одного ненулевого окаймляющего минора, то приступаем к рассматриванию его окаймляющих миноров. И так далее, аналогичным образом.

Найти ранг матрицы методом окаймляющих миноров

А = 2 1 0 - 1 3 4 2 1 0 - 1 2 1 1 1 - 4 0 0 2 4 - 14

Поскольку элемент а 11 матрицы А не равен нулю, то возьмем минор 1-го порядка. Начнем искать окаймляющий минор, отличный от нуля:

2 1 4 2 = 2 × 2 - 1 × 4 = 0 2 0 4 1 = 2 × 1 - 0 × 4 = 2

Мы нашли окаймляющий минор 2-го порядка не равный нулю 2 0 4 1 .

Осуществим перебор окаймляющих миноров — (их ( 4 - 2 ) × ( 5 - 2 ) =6 штук).

2 1 0 4 2 1 2 1 1 = 0 ; 2 0 - 1 4 1 0 2 1 1 = 0 ; 2 0 3 4 1 - 1 2 1 - 4 = 0 ; 2 1 0 4 2 1 0 0 2 = 0 ; 2 0 - 1 4 1 0 0 2 4 = 0 ; 2 0 3 4 1 - 1 0 2 - 14 = 0

Нахождение ранга матрицы методом Гаусса (с помощью элементарных преобразований)

Вспомним, что представляют собой элементарные преобразования.

  • путем перестановки строк (столбцов) матрицы;
  • путем умножение всех элементов любой строки (столбца) матрицы на произвольное ненулевое число k;

путем прибавления к элементам какой-либо строки (столбца) элементов, которые соответствуют другой стоки (столбца) матрицы, которые умножены на произвольное число k.

Нахождение ранга матрицы методом Гаусса — метод, который основывается на теории эквивалентности матриц: если матрица В получена из матрицы А при помощи конечного числа элементарных преобразований, то Rank(A) = Rank(B).

Справедливость данного утверждения следует из определения матрицы:

  • в случае перестановки строк или столбцов матрицы ее определитель меняет знак. Если он равен нулю, то и при перестановке строк или столбцов остается равным нулю;
  • в случае умножения всех элементов какой-либо строки (столбца) матрицы на произвольное число k, которое не равняется нулю, определитель полученной матрицы равен определителю исходной матрицы, которая умножена на k;

в случае прибавления к элементам некоторой строки или столбца матрицы соответствующих элементов другой строки или столбца, которые умножены на число k, не изменяет ее определителя.

Суть метода элементарных преобразований: привести матрицу ,чей ранг необходимо найти, к трапециевидной при помощи элементарных преобразований.

Ранг матриц такого вида достаточно просто найти. Он равен количеству строк, в которых есть хотя бы один ненулевой элемент. А поскольку ранг при проведении элементарных преобразований не изменяется, то это и будет ранг матрицы.

Проиллюстрируем этот процесс:

  • для прямоугольных матриц А порядка p на n, число строк которых больше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 2 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 0 0 0 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 , R a n k ( A ) = n

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k ( A ) = k

  • для прямоугольных матриц А порядка p на n, число строк которых меньше числа столбцов:

А ~ 1 b 12 b 13 ⋯ b 1 p b 1 p + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 p b 2 p + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b p p + 1 ⋯ b p n , R a n k ( A ) = p

А ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0

А ~ 1 b 12 b 13 ⋯ b 1 n - 1 b 1 n 0 1 b 23 ⋯ b 2 n - 1 b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b n - 1 n 0 0 0 ⋯ 0 1 , R a n k ( A ) = n

A ~ 1 b 12 b 13 ⋯ b 1 k b 1 k + 1 ⋯ b 1 n 0 1 b 23 ⋯ b 2 k b 2 k + 1 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 b k k + 1 ⋯ b k n 0 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 0 0 ⋯ 0 , R a n k ( A ) = k , k n

Найти ранг матрицы А при помощи элементарных преобразований:

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11

Поскольку элемент а 11 отличен от нуля, то необходимо умножить элементы первой строки матрицы А на 1 а 11 = 1 2 :

А = 2 1 - 2 6 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~

Прибавляем к элементам 2-ой строки соответствующие элементы 1-ой строки, которые умножены на (-3). К элементам 3-ей строки прибавляем элементы 1-ой строки, которые умножены на (-1):

~ А ( 1 ) = 1 1 2 - 1 3 3 0 0 - 1 1 - 1 2 - 7 5 - 2 4 - 15 7 2 - 4 11 ~ А ( 2 ) = = 1 1 2 - 1 3 3 + 1 ( - 3 ) 0 + 1 2 ( - 3 ) 0 + ( - 1 ) ( - 3 ) - 1 + 3 ( - 3 ) 1 + 1 ( - 3 ) - 1 + 1 2 ( - 3 ) 2 + ( - 1 ) ( - 1 ) - 7 + 3 ( - 1 ) 5 + 1 ( - 5 ) - 2 + 1 2 ( - 5 ) 4 + ( - 1 ) ( - 5 ) - 15 + 3 ( - 5 ) 7 + 1 ( - 7 ) 2 + 1 2 ( - 7 ) - 4 + ( - 1 ) ( - 7 ) 11 + 3 ( - 7 ) =

= 1 1 2 - 1 3 0 - 3 2 3 - 10 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10

Элемент а 22 ( 2 ) отличен от нуля, поэтому мы умножаем элементы 2-ой строки матрицы А на А ( 2 ) н а 1 а 22 ( 2 ) = - 2 3 :

А ( 3 ) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 3 - 10 0 - 9 2 9 - 30 0 - 3 2 3 - 10 ~ А ( 4 ) = 1 1 2 - 1 3 0 1 - 2 20 3 0 - 3 2 + 1 3 2 3 + ( - 2 ) 3 2 - 10 + 20 3 × 3 2 0 - 9 2 + 1 9 2 9 + ( - 2 ) 9 2 - 30 + 20 3 × 9 2 0 - 3 2 + 1 3 2 3 + ( - 2 ) 3 2 - 10 + 20 3 × 3 2 = = 1 1 2 - 1 3 0 1 - 2 20 3 0 0 0 0 0 0 0 0 0 0 0 0

  • К элементам 3-ей строки полученной матрицы прибавляем соответствующие элементы 2-ой строки ,которые умножены на 3 2 ;
  • к элементам 4-ой строки — элементы 2-ой строки, которые умножены на 9 2 ;
  • к элементам 5-ой строки — элементы 2-ой строки, которые умножены на 3 2 .

Все элементы строк равны нулю. Таким образом, при помощи элементарных преобразований ,мы привели матрицу к трапецеидальному виду, откуда видно, что R a n k ( A ( 4 ) ) = 2 . Отсюда следует, что ранг исходной матрицы также равен двум.

Если проводить элементарные преобразования, то не допускаются приближенные значения!

Читайте также: