Соединения ксенона и криптона

Обновлено: 04.07.2024

Содержание

История

Открыт в 1898 году британскими учёными Уильямом Рамзаем и Морисом Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как небольшая примесь к криптону. За открытие инертных газов (в частности ксенона) и определение их места в периодической таблице Менделеева Рамзай получил в 1904 году Нобелевскую премию по химии.

Происхождение названия

Распространённость

Ксенон — весьма редкий элемент. При нормальных условиях в кубометре воздуха содержится 0,086—0,087 см 3 ксенона.

В Солнечной системе

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли , хотя содержание изотопа 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. В атмосфере Юпитера, напротив, концентрация ксенона необычно высока — почти в два раза выше, чем в фотосфере Солнца.

Земная кора

Ксенон содержится в земной атмосфере в крайне незначительных количествах, 0,087 ± 0,001 миллионной доли по объёму (мкл/л), или 1 часть на 11,5 млн. Он также встречается в газах, выделяемых водами некоторых минеральных источников. Некоторые радиоактивные изотопы ксенона, например 133 Xe и 135 Xe, получаются в результате нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии с длиной волны 467,13 нм и 462,43 нм ). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа.

Свойства

Физические свойства

При нормальном давлении температура плавления 161,40 К (−111,75 °C), температура кипения 165,051 К (−108,099 °C). Молярная энтальпия плавления 2,3 кДж/моль , молярная энтальпия испарения 12,7 кДж/моль , стандартная молярная энтропия 169,57 Дж/(моль·К) .

Плотность в газообразном состоянии при стандартных условиях (0 °C, 100 кПа ) 5,894 г/л (кг/м 3 ), в 4,9 раза тяжелее воздуха. Плотность жидкого ксенона при температуре кипения 2,942 г/см 3 . Плотность твёрдого ксенона 2,7 г/см 3 (при 133 К ), он образует кристаллы кубической сингонии (гранецентрированная решётка), пространственная группа Fm3m, параметры ячейки a = 0,6197 нм , Z = 4 .

Тройная точка: температура 161,36 К (−111,79 °C), давление 81,7 кПа , плотность 3,540 г/см 3 .

В электрическом разряде светится синим цветом (462 и 467 нм). Жидкий ксенон является сцинтиллятором.


Слабо растворим в воде (0,242 л/кг при 0 °C, 0,097 л/кг при 25 °C).

При стандартных условиях (273 К, 100 кПа): теплопроводность 5,4 мВт/(м·К) , динамическая вязкость 21 мкПа·с , коэффициент самодиффузии 4,8·10 −6 м 2 /с , коэффициент сжимаемости 0,9950, молярная теплоёмкость при постоянном давлении 20,79 Дж/(моль·К).

Ксенон диамагнитен, его магнитная восприимчивость −4,3·10 −5 . Поляризуемость 4,0·10 −3 нм 3 . Энергия ионизации 12,1298 эВ .

Химические свойства

Ксенон стал первым инертным газом, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 году. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

Изотопы

Известны изотопы ксенона с массовыми числами от 108 до 147 (количество протонов 54, нейтронов от 54 до 93), и 12 ядерных изомеров.

9 изотопов встречаются в природе. Из них стабильными являются семь: 126 Xe, 128 Xe, 129 Xe, 130 Xe, 131 Xe, 132 Xe, 134 Xe. Еще два изотопа ( 124 Xe и 136 Xe) имеют огромные периоды полураспада, много больше возраста Вселенной.

Остальные изотопы искусственные, самые долгоживущие — 127 Xe (период полураспада 36,345 суток) и 133 Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131 Xe m с периодом полураспада 11,84 суток, 129 Xe m (8,88 суток) и 133 Xe m (2,19 суток).

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ, его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Иодная яма).

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

Из-за своей малой распространённости ксенон гораздо дороже более лёгких инертных газов. В 2009 году цена ксенона составяла около 20 евро за литр газообразного вещества при стандартном давлении.

Ксенон

После того как были открыты гелий, неон, аргон и криптон, завершающие четыре первых периода таблицы Менделеева, уже не вызывало сомнений, что пятый и шестой периоды тоже должны оканчиваться инертным газом. Но найти их удалось не сразу. Это и неудивительно: в 1 м 3 воздуха 9,3 л аргона и всего лишь 0,08 мл ксенона.

Но к тому времени стараниями ученых, прежде всего англичанина Траверса, появилась возможность получать значительные количества жидкого воздуха. Стал доступен даже жидкий водород. Благодаря этому Рамзай совместно с Траверсом смог заняться исследованием наиболее труднолетучей фракции воздуха, получающейся после отгонки гелия, водорода, неона, кислорода, азота и аргона. Остаток содержал сырой (то есть неочищенный) криптон. Однако после откачки его в сосуде неизменно оставался пузырек газа. Этот газ голубовато светился в электрическом разряде и давал своеобразный спектр с линиями в областях от оранжевой до фиолетовой. В поисках нового элемента и для изучения его свойств Рамзай и Траверс переработали около ста тонн жидкого воздуха. Индивидуальность ксенона как нового химического элемента они установили, оперируя всего 0,2 см 3 этого газа. Необычайная для того времени тонкость эксперимента!

Синтез первых соединений ксенона поставил перед химиками вопрос о месте инертных газов в периодической системе. Прежде благородные газы были выделены в отдельную нулевую группу, что вполне отвечало представлению об их валентности. Но, когда ксенон вступил в химическую реакцию, когда стал известен его высший фторид, в котором валентность ксенона равна восьми (а это вполне согласуется со строением его электронной оболочки), инертные газы решили перенести в VIII группу. Нулевая группа перестала существовать.

Свойства ксенона

Ксенон, как и все инертные газы VIII группы таблицы Менделеева, состоит из одноатомных молекул, не имеет ни запаха, ни цвета, не горит и не поддерживает горение, не взрывоопасен, слабо растворяется в воде и очень быстро выделяется из организма через легкие.

Как инертный газ он благороден, никакой биотрансформации в организме не подвергается, не вступает ни в какие химические реакции. Инертность Хе обусловлена насыщенностью внешней электронной оболочки, электронные конфигурации его предельно замкнуты и максимально прочны. Порядковый номер Хе — 54, молекулярный вес —131,29. Плотность при 0 °С и 1 Ата составляет 5,89 кг/м 3 , что в 4 раза выше, чем у воздуха и в З,2 раза выше, чем у N2О.

Ксенон в природе

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0.087±0.001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные виды ксенона, например, 133 Xe и 135 Xe , получаются как результат нейтронного облучения ядерного топлива в реакторах.

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0,08 миллионной доли, хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты. У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца.

Получение ксенона

Основным источником промышленного производства ксенона является воздух, где в 1000 м 3 содержится 86 см 3 ксенона. В России и странах СНГ уровень годового промышленного производства чистого ксенона составляет около 1500 м 3 .

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0,1–0,2% криптоноксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. Как заключение, ксеноно-криптоновый концентрат может быть разделен дистилляцией на криптон и ксенон.

Основными поставщиками сырья (криптон-ксенонового концентрата) являются крупные промышленные центры металлургической промышленности России. Для получения чистого ксенона используется криптон-ксеноновый концентрат, который подвергается криогенной ректификации на газоразделительных установках, обеспечивающих получение ксенона высокой чистоты (99,999%). Из-за своей малой распространенности ксенон гораздо дороже более легких инертных газов.

Ксенон на практике

Несмотря на высокую стоимость, ксенон незаменим в ряде случаев. Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).

Радиоактивные изотопы (127 Xe , 133 Xe , 137 Xe и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках. Фториды ксенона используют для пассивации металлов.

Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателей космических аппаратов.

С конца XX века ксенон стал применяться как средство для общего наркоза (достаточно дорогой, но абсолютно нетоксичный, точнее — не вызывает химических последствий — как инертный газ). Первые диссертации о технике ксенонового наркоза в России появились в 1993 г. В качестве лечебного наркоза ксенон эффективно применяется для снятия острых абстинентных состояний и лечения наркомании, а также психических и соматических расстройств.

Фториды и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.

В изотопе ксенон-129 возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния, называемого гиперполяризацией.

Ксено́н — элемент главной подгруппы восьмой группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 54. Обозначается символом Xe (лат. Xenon ). Простое вещество ксенон (CAS-номер: 7440-63-3) — инертный одноатомный газ без цвета, вкуса и запаха.

Содержание

История

Открыт в 1898 году английскими учеными У.Рамзаем и У. Рэлей как небольшая примесь к криптону.

Происхождение названия

От греч. ξένος — чужой. Открыт в 1898 английскими исследователями У. Рамзаем и М. Траверсом, которые подвергли медленному испарению жидкий воздух и спектроскопическим методом исследовали его наиболее труднолетучие фракции. Ксенон был обнаружен как примесь к криптону, с чем связано его название. Ксенон — весьма редкий элемент. При нормальных условиях 1000 м 3 воздуха содержат около 87 см 3 ксенона.

Распространённость

В солнечной системе

Ксенон относительно редок в атмосфере Солнца, на Земле, в составе астероидов и комет. Концентрация ксенона в атмосфере Марса аналогична земной: 0.08 миллионной доли [3] , хотя содержание 129 Xe на Марсе выше, чем на Земле или Солнце. Поскольку данный изотоп образуется в процессе радиоактивного распада, полученные данные могут свидетельствовать о потере Марсом первичной атмосферы, возможно, в течение первых 100 миллионов лет после формирования планеты [4] [5] . У Юпитера, напротив, необычно высокая концентрация ксенона в атмосфере — почти в два раза выше, чем у Солнца [6] .

Земная кора

Ксенон находится в земной атмосфере в крайне незначительных количествах, 0,087±0,001 миллионной доли (μL/L), а также встречается в газах, испускаемых некоторыми минеральными источниками. Некоторые радиоактивные изотопы ксенона, например, 133 Xe и 135 Xe, получаются как результат нейтронного облучения ядерного топлива в реакторах.

Определение

Качественно ксенон обнаруживают с помощью эмиссионной спектроскопии (характеристические линии 467,13 нм и 462,43 нм). Количественно его определяют масс-спектрометрически, хроматографически, а также методами абсорбционного анализа [2] .

Свойства

Физические


Температура плавления −112 °C, температура кипения −108 °C, свечение в разряде фиолетовым цветом.



Химические

Первый инертный газ, для которого были получены настоящие химические соединения. Примерами соединений могут быть дифторид ксенона, тетрафторид ксенона, гексафторид ксенона, триоксид ксенона, ксеноновая кислота и другие.

Первое соединение ксенона было получено Нилом Барлеттом реакцией ксенона с гексафторидом платины в 1962 г. В течение двух лет после этого события было получено уже несколько десятков соединений, в том числе фториды, которые являются исходными веществами для синтеза всех остальных производных ксенона.

В настоящее время описаны фториды ксенона и их различные комплексы, оксиды, оксифториды ксенона, малоустойчивые ковалентные производные кислот, соединения со связями Xe-N, ксенонорганические соединения. Относительно недавно был получен комплекс на основе золота, в котором ксенон является лигандом. Существование ранее описанных относительно стабильных хлоридов ксенона не подтвердилось (позже были описаны эксимерные хлориды с ксеноном).

Изотопы

Для ксенона известны изотопы с массовыми числами от 110 до 147, и 12 ядерных изомеров. Из них стабильными являются изотопы с массовыми числами 124, 126, 128, 129, 130, 131, 132, 134, 136. Остальные изотопы радиоактивны, самые долгоживущие -- 127 Xe (период полураспада 36.345 суток) и 133 Xe (5,2475 суток), период полураспада остальных изотопов не превышает 20 часов. Среди ядерных изомеров наиболее стабильны 131 Xe m с периодом полураспада 11,84 суток, 129 Xe m (8.88 суток) и 133 Xe m (2.19 суток) [7]

Изотоп ксенона с массовым числом 135 (период полураспада 9,14 часа) имеет максимальное сечение захвата тепловых нейтронов среди всех известных веществ — примерно 3 миллиона барн для энергии 0,069 эВ [8] , его накопление в ядерных реакторах в результате цепочки β-распадов ядер теллура-135 и иода-135 приводит к эффекту так называемого отравления ксеноном (см. также Йодная яма).

Получение

Ксенон получают как побочный продукт производства жидкого кислорода на металлургических предприятиях.

В промышленности ксенон получают как побочный продукт разделения воздуха на кислород и азот. После такого разделения, которое обычно проводится методом ректификации, получившийся жидкий кислород содержит небольшие количества криптона и ксенона. Дальнейшая ректификация обогащает жидкий кислород до содержания 0.1-0.2 % криптоно-ксеноновой смеси, которая отделяется адсорбированием на силикагель или дистилляцией. В заключение, ксеноно-криптоновый концентрат может быть разделён дистилляцией на криптон и ксенон, подробнее здесь.

Из-за своей малой распространенности, ксенон гораздо дороже более легких инертных газов.

Применение




Несмотря на высокую стоимость, ксенон незаменим в ряде случаев:

  • Ксенон используют для наполнения ламп накаливания, мощных газоразрядных и импульсных источников света (высокая атомная масса газа в колбах ламп препятствует испарению вольфрама с поверхности нити накаливания).
  • Радиоактивные изотопы ( 127 Xe, 133 Xe, 137 Xe, и др.) применяют в качестве источников излучения в радиографии и для диагностики в медицине, для обнаружения течи в вакуумных установках.
    используют для пассивацииметаллов.
  • Ксенон как в чистом виде, так и с небольшой добавкой паров цезия-133, является высокоэффективным рабочим телом для электрореактивных (главным образом — ионных и плазменных) двигателейкосмических аппаратов.
  • В конце XX века был разработан метод применения ксенона в качестве средства для общего наркоза и обезболивания. Первые диссертации о технике ксенонового наркоза появились в России в 1993 г. В 1999 году ксенон был разрешён к медицинскому применению в качестве средства для общего ингаляционного наркоза [9] .
  • В наши дни ксенон проходит апробацию в лечении зависимых состояний [10] .
  • Жидкий ксенон иногда используется как рабочая среда лазеров[источник не указан 1314 дней] .
    и оксиды ксенона предложены в качестве мощнейших окислителей ракетного топлива, а также в качестве компонентов газовых смесей для лазеров.
  • В изотопе 129 Xe возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами — состояния называемого гиперполяризацией.
  • Для транспортировки фтора, проявляющего сильные окисляющие свойства.

Биологическая роль

Ксенон не играет никакой биологической роли.

Физиологическое действие

  • Газ ксенон безвреден, но способен вызвать наркоз (по физическому механизму), а в больших концентрациях (более 80 %) вызывает асфиксию.
  • Вследствие более низкой скорости звука в ксеноне, чем в воздухе, заполнение ксеноном лёгких и выдыхание при разговоре приводит к значительному понижению тембра голоса (эффект, обратный эффекту гелия).
  • Фториды ксенона ядовиты, ПДК в воздухе 0,05 мг/м³.

Примечания

Ссылки

  • Химические элементы
  • Соединения ксенона
  • Неметаллы
  • Ксенон
  • Наркозные средства

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Ксенон" в других словарях:

Ксенон Z3 — Zenon: Z3 … Википедия

КСЕНОН — (символ Хе), газообразный неметаллический элемент, один из инертных газов. Открыт в 1898 г. Ксенон присутствует в земной атмосфере (в соотношении около 1:20000000) и может быть получен РЕКТИФИКАЦИЕЙ (разделением на фракции) жидкого воздуха.… … Научно-технический энциклопедический словарь

КСЕНОН — (гр. xenon.). Элемент из группы аргона; в ничтожн. количестве входит в состав воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ксенон (гр. xenos чужой (впервые был найден как примесь к криптону)) хим.… … Словарь иностранных слов русского языка

КСЕНОН — (Xenon), Xe химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29; относится к благородным газам. Ксенон открыли английские ученые У. Рамзай и М. Траверс в 1898 … Современная энциклопедия

Ксенон — (Xenon), Xe химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29; относится к благородным газам. Ксенон открыли английские ученые У. Рамзай и М. Траверс в 1898. … Иллюстрированный энциклопедический словарь

КСЕНОН — (лат. Xenon) Xe, химический элемент VIII группы периодической системы, атомный номер 54, атомная масса 131,29, относится к благородным газам. Название от греческого xenos чужой (открыт как примесь к криптону). Плотность 5,851 г/л, tкип 108,1 .С.… … Большой Энциклопедический словарь

Ксенон — Xe (от греч. xenos чужой * a. xenon; н. xenon; ф. xenon; и. xenon), хим. элемент VIII группы периодич. системы Менделеева, относится к инертным газам, ат.н. 54, ат. м. 131,3. Природный K. смесь девяти стабильных изотопов, среди к рых… … Геологическая энциклопедия

КСЕНОН — КСЕНОН, а, муж. Химический элемент, инертный газ без цвета и запаха, применяемый в мощных осветительных приборах. | прил. ксеноновый, ая, ое. Ксеноновая трубка. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

КСЕНОН — (Xenon), Хе, хим. элемент VIII группы периодич. системы элементов, инертный газ. Ат. номер 54, ат. масса 131,30. Природный К. состоит из 9 стабильных изотопов: 124 Хе (0,10%), 126 Хе (0,09%), 128 Хе (1,91%), 129 Хе (26,4%), 130 Хе (4,1%), 131 Хе… … Физическая энциклопедия

ксенон — сущ., кол во синонимов: 2 • газ (55) • элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

КСЕНОН (ХЕ) — инертный газ нулевой гр. периодической системы, порядковый № 54. К. земной атмосферы состоит из 9 стабильных изотопов. Обогащенный тяжелыми изотопами, К. обнаружен в урановых м лах, где он образуется при спонтанном делении изотопов урана. См.… … Геологическая энциклопедия

Код Кемлера:
20 : удушающий газ или газ, не представляющий дополнительной опасности Номер
ООН :
2036 : СЖАТЫЙ КСЕНОН
Класс:
2.2
Этикетка: 2.2 : Невоспламеняющиеся, нетоксичные газы (соответствует группам, обозначенным буквой A или заглавной О); Упаковка: -



Код Кемлера:
22 : охлажденный сжиженный газ, удушающий
номер Номер ООН :
2591 : КСЕНОН, ХОЛОДИЛЬНАЯ ЖИДКОСТЬ
Класс:
2.2
Этикетка: 2.2 : Невоспламеняющиеся, нетоксичные газы (соответствуют группам, обозначенным буквой A или заглавной O); Упаковка: -



Ксенон является химическим элементом из атомного номера 54, символ Xe. Это благородный газ без запаха и цвета. В газоразрядной лампе он излучает синий свет.

Ксенон - самый редкий и самый дорогой из благородных газов, за исключением радона , все изотопы которого радиоактивны.

Ксенон извлекается воздушной перегонкой. Перегонять воздух, он должен быть жидким при сжатии его (он нагревается, оставаясь при этом газообразная, но сохраняя его сжимают и охлаждая его, он разжижает ). Затем ксенон можно извлечь фракционной перегонкой из воздуха, который стал жидким.

Резюме

История

В 1930-х годах инженер Гарольд Эдгертон начал интересоваться стробоскопом для применения в высокоскоростной фотографии . Это исследование привело его к изобретению ксенонового строба, в котором свет генерировался очень коротким разрядом тока в трубке, заполненной ксеноном. К 1934 году Эдгертон смог с помощью этой техники генерировать вспышки микросекундной длительности.

В 1939 году Альберт Р. Бенке-младший изучал причины наркоза у водолазов в глубокой воде, заставляющих дышать воздухом более плотным и более высоким давлением, чем окружающий воздух. Проверяя эффект изменения состава воздуха в баллонах, он понял, что человеческий организм по-разному реагирует в зависимости от химического состава газа, вдыхаемого под высоким давлением. Он приходит к выводу, что ксенон можно использовать в анестезии . Хотя кажется, что русский Лажарев изучал использование ксенона в анестезии в 1941 году, первая опубликованная работа, подтверждающая действие ксенона, датируется 1946 годом и касается экспериментов Дж. Х. Лоуренса на мышах. Первое использование ксенона в качестве анестетика в хирургии относится к 1951 году, когда Стюарт Каллен провел операцию двум пациентам.

В 1960 году физик Джон Х. Рейнольдс (in) обнаружил, что некоторые метеориты содержат аномально высокие уровни изотопа 129 ксенона. Он предположил , избыток этого изотопа пришел из продукта распада из йода 129 . Этот изотоп медленно образуется в межзвездной среде в результате реакций расщепления из-за космических лучей и реакций деления ядер , но в значительных количествах он образуется только при взрыве сверхновых . Полувыведения из йода-129 является относительно коротким по космологической шкале (всего 16 миллионов лет), это показало , что мало времени прошло между сверхновой и моментом , когда метеорит затвердевает в улавливания йода 129 . Считалось, что эти два события (сверхновая звезда и затвердевание газового облака) произошли в первые дни истории Солнечной системы , при этом йод-129, вероятно, образовался до - хотя и незадолго до - образования Солнечной системы.

Ксенон и другие благородные газы долгое время считались полностью химически инертными и не участвовали в образовании химических соединений . Однако, преподавая в Университете Британской Колумбии , Нил Бартлетт обнаружил, что гексафторид платины (PtF 6 ) является очень мощным окислителем , способным окислять кислород (O 2 ) с образованием диоксигенилгексафтороплатината (O 2 + [PtF 6 ] - ). . Поскольку кислород и ксенон имеют почти идентичные энергии первой ионизации , Бартлетт понял, что гексафторид платины, возможно, также может окислять ксенон. в 23 марта 1962 г. , он смешал эти два газа и получил первое химическое соединение, содержащее благородный газ, гексафтороплатинат ксенона . Бартлетт думал, что его состав был Xe + [PtF 6 ] - , но более поздние исследования показали, что он, вероятно, сделал смесь нескольких солей ксенона. С тех пор были обнаружены многие другие соединения ксенона и идентифицированы некоторые соединения, содержащие другие благородные газы ( аргон , криптон и радон ), включая, в частности, гидрофторид аргона , дифторид криптона или фторид радона .

Изобилие на Земле и во Вселенной

Ксенон существует в следовых количествах в атмосфере Земли с концентрацией 0,087 ± 0,001 частей на миллион .

Ксенон относительно редко встречается на Солнце , на Земле , в астероидах или кометах .

Атмосфера Марса имеет такое же содержание ксенона, как и Земля, или 0,08 частей на миллион . Напротив, доля ксенона-129 (по отношению к общему ксенону) на Марсе выше, чем на Земле или на Солнце. Поскольку этот изотоп образуется при распаде радиоактивных элементов, это указывает на то, что Марс, возможно, потерял большую часть своей ранней атмосферы, возможно, в первые 100 миллионов лет после своего образования.

Напротив, атмосфера Юпитера имеет необычно высокую концентрацию ксенона, примерно в 2,6 раза больше, чем у Солнца. Эта высокая концентрация остается необъяснимой и может быть связана с быстрым и ранним образованием планетезималей до того, как протопланетный диск начнет нагреваться (иначе ксенон не оказался бы во льду планетезималей). В Солнечной системе в целом доля ксенона (с учетом всех его изотопов) составляет 1,56 · 10 -8 , или массовая концентрация 1 из 64 миллионов.

Низкая концентрация ксенона на Земле может быть объяснена возможностью ковалентных связей ксенон-кислород в кварце (особенно при высоком давлении), что может уменьшить присутствие газообразного ксенона в атмосфере. Два исследователя, Святослав Щека и Ханс Кепплер, предложили другое объяснение в 2012 году: когда магма остывала и кристаллизовалась, она захватывала более легкие инертные газы. Большинство крупных атомов ксенона осталось в атмосфере. Под воздействием тепла, сильного ультрафиолетового излучения молодого Солнца и бомбардировки Земли метеоритами атмосфера частично улетела в космос, унося с собой ксенон. Другие исследователи «объясняют, что ксенон есть, но где-то прячется. Мы говорим, что его там нет, потому что на очень ранних этапах истории Земли ему негде было спрятаться. "

В отличие от других благородных газов меньшей массы, ксенон и криптон не образуются в звездном нуклеосинтезе внутри звезд . Действительно, затраты энергии на производство элементов тяжелее никеля 56 путем плавления слишком высоки. В результате при взрывах сверхновых образуется большое количество изотопов ксенона .

Промышленное производство

Промышленно, ксенон является побочным продуктом из отделения от воздуха в кислород и азот . В результате этого разделения, обычно осуществляемого фракционной перегонкой в двойной колонне , полученный жидкий кислород содержит небольшое количество ксенона и криптона. Путем проведения дополнительных стадий фракционной перегонки его можно обогатить, чтобы он содержал кумулятивную концентрацию от 0,1 до 0,2% криптона и ксенона, смеси благородных газов, извлекаемых адсорбцией на силикагеле или дистилляцией. Затем эту смесь разделяют перегонкой на ксенон и криптон. Для извлечения одного литра ксенона из атмосферы требуется 220 ватт-часов энергии . В 1998 году мировое производство ксенона составляло от 5 000 до 7 000 м 3 ( ) . Из-за низкой концентрации в воздухе ксенон намного дороже, чем другие более легкие благородные газы. В 1999 г. закупочная цена небольших партий составляла около 10 евро / л по сравнению с 1 евро / л для криптона и 0,20 евро / л для неона. Эти цены остаются очень скромными по сравнению с ценой на гелий 3 .

Читайте также: