Tpe резина что это

Обновлено: 05.07.2024

Компания Юнион Полимер Технолоджи регулярно проводит испытания EPDM и TPE-уплотнителей с целью контроля качества своей продукции и сравнения характеристик уплотнителей, представленных на рынке.

В статье производители окон могут наглядно увидеть разницу между этими видами уплотнителей и принять решение, с какими уплотнителями работать.

На заводе компании в Орловской области есть 2 испытательные лаборатории, которые позволяют проводить подобного рода исследованиях.

В данной статье представлено одно из таких исследований двух уплотнителей черного цвета:

  • образец №1 – EPDM-уплотнитель компании Юнион Полимер Технолоджи (ЮПТ).
  • образец №2 – TPE-уплотнитель стороннего производителя (No name).

Требования к уплотнителям разделяют на требования к материалу, из которого они изготовлены, и требования, предъявляемые к готовым изделиям.

В соответствии с ГОСТ, образцы уплотнителей были проверены на качество готовых уплотнителей и исходного материала. Исследования опирались на:

Результаты испытаний уплотнителей в лабораториях ЮПТ

В зависимости от типа материала тестируемые уплотнители относятся к следующим группам:

Тестирование и оценка результатов испытаний проводятся на соответствие уплотнителей требованиям соответствующей группы материалов. Изначально требования к EPDM уплотнителям для окон выше, чем к TPE.

Оценка качества поверхности материала уплотнителя и среза

Уплотнитель должен быть на срезе монолитным, однотонным, без посторонних включений и пустот в массе материала.

Разнооттеночность цвета (разнотон и разноцвет) лицевой поверхности уплотнителей не допускается (кроме случаев, оговоренных в договоре между изготовителем и потребителем).

Метод испытания: визуальный.

Фото: при визуальном осмотре на срезах 2 образцов отсутствуют включения и разнооттеночность, © Union Результат испытания: По внешнему виду образцы характеризуются черным цветом, гладкие без отпечатков, углублений и пузырей, на срезе монолитные без пустот и включений.

Заключение: образец №1 EPDM и образец №2 TPE соответствуют требованиям ГОСТ.

Оценка соответствия геометрических размеров эталонному уплотнителю

Геометрические размеры поперечного сечения уплотнителей должны соответствовать размерам, указанным в рабочих чертежах.

Предельные отклонения номинальных размеров не должны превышать значений, установленных в таблице 1: для номинальных размеров сечения от 10,1 мм до 40 мм, предельные отклонения должны составлять +/- 1мм.

Допускается проводить проверку размеров поперечного сечения на проекторе сравнением с контрольным сечением профиля, выполненным на кальке или другом материале в масштабе 10:1 или 5:1.

Фото: цифровой измерительный проектор для проверки сечения профиля на эталонной кальке, © Union Результаты испытаний (см. рис. 1, 2 ниже):

  • образец №1 EPDM – предельное отклонение: 0,02 мм.
  • образец №2 TPE – предельное отклонение: 1 мм.

Фото: Рис 1, соответствие геометрии образца 1 EPDM (черный цвет) эталонной, © Union Фото: Рис 2, соответствие геометрии образца 2 TPE (черный цвет) эталонной, © Union Заключение: образец №1 EPDM, образец №2 TPE соответствуют требованиям ГОСТ.

В ходе визуального анализа геометрии уплотнителей также выявлено:

  • образец №1 EPDM – геометрические параметры уплотнителя соответствуют заявленному чертежу, хорошо вставляются и держатся в установочном пазе, обеспечивают хороший прижим створки;
  • образец №2 TPE – уплотнитель имеет воздушные камеры больше эталонного размера, что может привести к большим усилиям при запирании створки.

Изменение линейных размеров уплотнителей после температурного воздействия

Изменение линейных размеров уплотнителей после теплового воздействия не должно быть более 3%.

Метод испытания: Инструментальный. Испытательное оборудование – термошкаф.

Фото: испытания уплотнителей в термошкафу в лаборатории ЮПТ, © Union Фото: температурный режим испытания уплотнителей в термошкафу в лаборатории ЮПТ, © Union Результат испытания:

  • образец №1 EPDM: усадка 1%;
  • образец №2 TPE: усадка 3%.

Заключение: образец №1 EPDM и образец №2 TPE соответствуют требованиям ГОСТ. Усадка EPDM-уплотнителя в 3 раза меньше, чем у TPE.

Определение температурного предела хрупкости

Требование ГОСТ 7912, информационные данные:

Сущность метода заключается в определении температурного предела хрупкости резины – самой низкой температуры, при которой резина в условиях испытания не разрушается.

Метод испытания: Инструментальный. Испытательное оборудование ­– прибор для определения низкотемпературной хрупкости материалов модели GT-7061-NDA.

Фото: прибор для определения низкотемпературной хрупкости материалов модели GT-7061-NDA, © Union Температурный предел хрупкости определяют по испытаниям при каждой температуре на 4-х новых образцах.

Образцы Температура, t°C
-40 -45 -50 -55
Образец №1 EPDM без разрушения без разрушения без разрушения без разрушения
Образец №2 TPE без разрушения трещина (разрушился)* разрушился разрушился

Заключение: образец №1 EPDM соответствует требованиям ГОСТ (группа I – не должны разрушаться при температуре -55 0 С). Образец №2 TPE не соответствует требованиям ГОСТ (группа IV – не должны разрушаться при температуре -45 0 С).

Определение сопротивления эксплуатационным воздействиям

Требование: ГОСТ 31362-2007, 9.2, таблица 2:

Остаточная деформация сжатия: Относительное изменение не более 50%; отсутствие трещин.

Остаточная деформация при сжатии (ОДС) по ГОСТ 31362-2007:

Характеристика уплотнителя, выражаемая отношением необратимой за время испытания деформации сжатия (растяжения) к максимальной деформации.

Метод испытания: Инструментальный. Испытательное оборудование – термошкаф, морозильная камера, струбцина.

Фото: образцы во время сжатия в струбцине в термошкафу, © Union Состояние образцов №1 и №2 до сжатия и после сжатия в струбцине представлены на рисунке ниже.

Фото: образцы №1 EPDM и №2 TPE до сжатия и после сжатия в струбцине, © Union Результаты испытаний:

Наименование
образца
Фиксированное сжатие Циклическое
сжатие
У отн .измен, % У отн. измен, %
Образец №1 EPDM 46 48
Образец №2 TPE 67 68

Заключение: Образец №1 EPDM соответствует требованиям ГОСТ (ОДС меньше 50%). Образец №2 TPE не соответствует требованиям ГОСТ (ОДС больше 50%).

Итоговые результаты испытаний образцов уплотнителей

Результаты проведения испытаний 2-х образцов уплотнителей разных производителей представлены в итоговой таблице.

Результаты испытаний уплотнителей EPDM и дешевых TPE

Выводы:

  • показал соответствие требованиям ГОСТ по всем проведенным испытаниям. Отклонения от номинальных требований ГОСТ – допустимые и минимальные: отклонения от геометрических размеров +0,02 мм при норме 1 мм, изменение линейных размеров после температурного воздействия 1% при норме 3%.
  • образец №1 (EPDM) не разрушился даже при температуре -55 0 С – ГОСТ требует до -50 0 С для соответствующей I группы. Требования ГОСТ к EPDM-уплотнителям изначально выше, чем к TPE, потому что они предназначены для более широкого спектра условий эксплуатации, включая экстремальные температуры.
  • ОДС в пределах допустимых значений.

Образец №1 (EPDM) без проблем может использоваться в брендовых и бюджетных профильных системах при широком диапазоне наружных температур воздуха.

  • не прошел по требованию ГОСТ к температурному пределу хрупкости – при температуре -45 0 С треснул (разрушился). По требованию ГОСТ для соответствующей IV группы, при данной температуре TPE-уплотнитель не должен разрушаться.
  • отклонения геометрических размеров +1 мм на границе предельно допустимых в большую сторону по ГОСТ: +1 мм;
  • не прошел по требованию ГОСТ к ОДС.

Более низкие показатели образца №2 из TPE связаны со следующими причинами:

  • с характеристиками самого материала TPE. Данный вид материала выдерживает меньшие температурные нагрузки по показателю предела хрупкости по сравнению с EPDM и имеет более высокую остаточную деформацию от сжатия;
  • с качеством самого тестируемого образца уплотнителя. Показатели отклонения образца от геометрических размеров связаны с низким качеством производства продукции (некачественная оснастка, несоблюдение требований технологического процесса и прочее). Такие отклонения в основном наблюдаются у эконом-уплотнителей TPE.

У окна с таким уплотнителем при низких температурах может наблюдаться продувание. Данный уплотнитель имеет высокие ОДС и менее эластичный. При низких температурах после открывания окна и повторного запирания створки плотность притвора будет недостаточной для блокирования последующего продувания в притворе.

Предельно допустимые отклонения геометрических размеров у образца №2 TPE при использовании в бюджетных профильных системах (с нестабильными размерами сечения профиля) могут привести к тому, что окно будет туго закрываться – потребуется прикладывать большее усилие на оконную ручку. Это также усилит нагрузку на оконный профиль и фурнитуру, что может сократить срок службы окна без ремонта.

Образец №2 (TPE) нежелательно использовать при экстремально низких или высоких температурах, а также в профильных системах с нестабильными геометрическими размерами. Из-за меньшей эластичности у образца №2 может быть более низкий срок эксплуатации.

Сравнение уплотнителей EPDM и TPE показывает, что уплотнители TPE имеют более низкие эксплуатационные характеристики, чем резиновые. Характеристики тестируемого эконом-образца TPE добавили недостатков этому виду продукции. Для производителей это означает снижение качества окна в целом, рост числа рекламаций, репутационные риски. Экономическая выгода от использования дешевых TPE-уплотнителей может быть сомнительна, но выбор остается за производителями.

ТЭП переводится как термопластичная резина, которая включает в себя лучшие свойства термопластов и эластичного каучука. Именно такая подошва очень подходит для зимней и летней обуви. Этот материал прекрасно справляется с большими нагрузками, устойчив к различным химическим воздействиям. Обувь с такой подошвой прослужит не один год. С такой подошвой вам не страшна гололедица!

ТЭП = термо-эласто-пласт, термопластический эластомер (TPE), в итоге пористая "резина"; а термопластическая резина. Читать дальше

Термоэластопласт (ТЭП), термопластичный эластомер (ТПЭ), термопластичная резина (ТПР) — это синтетические полимеры, которые при обычных температурах (±40°С) обладают свойствами резины. Обувные подошвы изготавливаются методом литья из гранулированного синтетического материала. Обувь с подошвой из тэп хорошо держит тепло, не скользит на снегу. Подошва подходит для. Читать далее

Какие уплотнители выбрать: TPE или EPDM?

05 октября 2013

ЭПДМ - Этилен-пропиленовый каучук, EPDM Ethylene Propylene Diene Monomer, представляет из себя синтетический каучук, который на сегодняшний день имеет очень широкую область применения и признан ведущими специалистами мира, как высококачественный материал.
Elastomere = EPDM, Vulkanisate или резинa.

Недостатки:

1. уплотнение несвариваемое

2. цветные уплотнители дороже, чем черные

Преимущества:

1. большие поля допусков в зазоре

2. исследовательские институты оценивают качество ЭПДМ уплотнителей выше, чем из ТЭП

3. низкая чувствительность к быстрым циклическим температурным изменениям

4. низкая чувствительность к воздействию озона, ультрафиолета

5. высокая прочность к механическим воздействиям

6. высокая эластичность уплотнителей сохраняется многие годы, низкая остаточная деформация

7. полное отсутствие контактного выцветания профиля (при контакте на ПВХ не остается черных следов, а также не выцветает сам уплотнитель)

8. высокие показатели долговечности

9. плотные углы при непрерывном протягивание резины, малые радиусы закругления

10. длительное время сохраняет упругое последействие.

11. сохраняет гибкость при воздействии низких температур, длительное время обеспечивает плотность при температурах от -60°C до +100°C.

12. обладает великолепным соотношением цены и качества.

13. применяется на практике более 60 лет.

14. отсутствие затвердений в местах сгиба.

15. крайне низкий уровень необратимой деформации.

TPE

ТЭП -Термоэластополимер Thermoplaste TPE, пластик. Представляет собой модифицированный ПВХ.

Недостатки:

1. механические свойства сильно зависят от температуры (жара/холод), при отрицательных температурах ТЭП уплотнитель "дубеет", при высоких положительных сильно размягчается

2. плохая эластичность и соответственно высокая остаточная деформация

3. низкая стойкость к ультрафиолетовому воздействию

4. низкая механическая прочность

5. невысокая стойкость к атмосферным воздействиям

6. жесткие углы при сваривании

Преимущества:

1. сваривание в углах профиля (окно ПВХ)

2. не поддерживает горения

3. большая цветовая палитра

Выводы:

1.Уплотнители ТЭП, коэкструдированные в профиль, имеют только один плюс - это сокращение ручного труда по установке уплотнителя, что удобно на автоматических производственных линиях.

2.По углам сварного шва образуется облой не только на профиле, но и на экструдированном уплотнителе, который удаляют либо вручную, либо на дорогостоящих зачистных станках.

3.Уплотнители ТЭП значительно уступают ЭПДМ по эластичности, стойкости ультрафиолетовому излучению, имеют малый температурный диапазон эксплуатации, высокую остаточную деформацию.

4.Серьезные проблемы с уплотнителями ТЭП возникают в зимний период, когда температура ниже -20С. Это получило подтверждение суровой зимой 2006г. Количество рекламаций производителям окон из профилей с ТЭП-уплотнителями превзошло все разумные нормы. Уплотнители ТЭП потеряли эластичность на морозе и превратились в жесткую прокладку между рамой и створкой, что соответственно привело к сильному продуванию.

5.Необходимо также отметить, что простая ремонтная операция по замене уплотнителя может в случае использования уплотнителя ТЭП вызвать необходимость замены всей створки. По углам створки уплотнитель ТЭП вваривается в профиль и демонтаж уплотнителя затруднителен и может привести к повреждению створки.

7.Операция по установке импоста с уплотнением ТЭП осложняется тем, что нужно удалять или вырезать уплотнение из рамы в зоне сопряжения импоста с рамой, что снижает производительность труда.

8.При использовании ЭПДМ контур уплотнения имеет один проклеенный стык по верху окна, контур получается герметичным. Если использовать ТЭП, то получим два разрыва контура уплотнителя по стыку импоста, что повлечет за собой ухудшение герметичности.

9.Резиновые уплотнители на основе полимеров ЭПДМ - хорошее решение в производстве качественной продукции.

Широкое применение этого вида материала во всем мире объясняется его высокой устойчивостью к воздействию внешних факторов, в том числе озона, а также к действию химических реагентов. Каучук, не соответствующий по качеству ЭПДМ, и его заменители портятся от воздействия кислорода, содержащегося в атмосфере. При этом на поверхности изделия образуются трещины, материал становится ломким или, наоборот, мягким. Для того чтобы предотвратить это, в производстве каучука используются некоторые добавки.

В каучук типа ЭПДМ нет необходимости вносить добавки, так как он не боится влияния кислорода и сохраняет неизменным качество изделия на протяжении многих лет. Например, уплотнитель, изготовленный из каучука, стабильно сохраняет свои характеристики и на протяжении многих лет не требует замены.

Устойчивая деформация (эластичность) является очень важным фактором для определения качества каучука. Изделия, выполненные из ЭПДМ-каучука, обладают высокими показателями эластичности. Именно эти свойства каучука типа ЭПДМ объясняют его широкое использование в Европе при производстве окон и дверей, а также в автомобильной промышленности — в качестве элемента изоляции.

P.S. МЫ УВЕРЕНЫ - ВЫ СДЕЛАЕТЕ ПРАВИЛЬНЫЙ ВЫБОР!

Игорь Окороков

Игорь Окороков - инженер-технолог обувного производства, выпускник Витебского государственного технологического университета легкой промышленности. С 2002 года работает специалистом различных обувных компаний России.

Материалы, применяемые для изготовления подошв

Подошва — одна из самых важных частей обуви, которая предохраняет ее от износа и во многом определяет срок ее службы. Именно подошва подвергается интенсивным механическим воздействиям, истиранию о землю и многократным деформациям. Поэтому материалы, применяемые для изготовления подошв, должны быть максимально устойчивы к воздействию окружающей среды. В этой статье я расскажу, из каких материалов может быть сделана подошва и каковы преимущества и недостатки каждого из них.

Методы крепления подошвы

Существует два основных метода крепления подошвы: клеевой и литьевой. Но вопреки расхожему мнению, технология крепления никак не влияет на потребительские свойства обуви. Клеевой метод используется для классической и модельной обуви выходного дня, чаще всего на кожаной или тунитовой подошве. В изготовлении комфортной обуви для повседневной носки чаще всего применяется литьевой способ.

Для подошв из разных материалов свойственны разные методы крепления. Подошвы из полиуретана чаще всего изготавливают методом прямого литья, но в редких случаях заранее отлитую подошву клеят к верху. Подошвы из ТПУ получают методом литья при высокой температуре под давлением. Также из термополиуретана делают набойки. Низ из термоэластопласта формуется литьем под давлением, а затем приклеивается. ПВХ-подошвы чаще всего крепят литьевым методом при изготовлении обуви для активного отдыха и повседневной носки. Подошвы из ЭВА присоединяют к верху обуви только литьевым методом, а тунитовые и кожаные — только клеевым. Для ТПР могут применяться оба варианта.

Подошвы из полиуретана (ПУ, PU)

Достоинства: Полиуретан обладает хорошими эксплуатационными свойствами: он мало весит, так как имеет пористую структуру, хорошо сопротивляется истиранию, гибок, отличается отличной амортизацией и хорошей теплоизоляцией. Изготовленные из полиуретана подошвы — легкие и гибкие, поэтому применяются в обуви, где эти характеристики имеют особенное значение.

Недостатки: Пористая структура полиуретана является и своеобразной оборотной стороной медали. Например, из-за нее полиуретановая подошва имеет плохое сцепление со снегом и льдом, поэтому зимняя обувь с подошвой из ПУ сильно скользит. Также минусом является большая плотность материала и потеря эластичности при низких (от -20 градусов) температурах. Следствием этого становятся разломы в местах изгиба подошвы, скорость появления которых зависит от особенностей эксплуатации обуви, в частности, от походки человека, степени его подвижности и других факторов.

Подошвы из термополиуретана (ТПУ, TPU)

Достоинства: Термополиуретан обладает достаточно высокой плотностью, благодаря чему из него можно изготавливать подошвы с глубоким протектором, которые обеспечивают отличное сцепление с поверхностью. Также достоинствами ТПУ является высокая износостойкость и сопротивление деформации, в том числе порезам и проколам.

Недостатки: Высокая плотность термополиуретана является одновременно и его недостатком, ведь из-за этого вес термополиуретановой подошвы достаточно велик, а эластичность и теплоизоляция оставляют желать лучшего. Для улучшения этих характеристик ТПУ часто комбинируют с полиуретаном, тем самым добиваясь снижения веса подошвы, повышая ее теплоизоляцию и эластичность. Такой способ называется двухкомпозиционным литьем, и узнать его довольно просто: изготовленная по такой технологии подошва состоит из двух слоев, и верхний слой сделан из полиуретана (ПУ), а нижний, контактирующий с землей, выполнен из термополиуретана.

Подошвы из термоэластопласта (ТЭП, TRP)

Достоинства: Этот материал может считаться всесезонным. Он прочен, эластичен, устойчив к морозам и износу. ТЭП обеспечивает хорошую амортизацию и сцепление с грунтом. Благодаря технологии изготовления подошвы из ТЭП, ее внешний слой получается монолитным, что обеспечивает ему прочность, а внутренний объем — пористым, сохраняющим тепло. Термоэластопласт может быть переработан, а это значит, что его использование в подошвах экономит ресурсы и не загрязняет окружающую среду.

Недостатки: При высоких и очень низких температурах (свыше 50 градусов и ниже -45 градусов) ТЭП теряет свои свойства, поэтому его используют только в повседневной обуви и, к слову, редко применяют для спецобуви.

Подошвы из поливинилхлорида (ПВХ, PVC)

Достоинства: Подошвы из ПВХ хорошо сопротивляются истиранию, стойки к воздействию агрессивных сред и легки в изготовлении. Их часто используют в домашней и детской обуви, а раньше особенно широко применяли для спецобуви, так как при смешивании с каучуком ПВХ получает такие свойства, как масло- и бензостойкость.

Недостатки: ПВХ используется только при производстве повседневной обуви для осени или весны, потому что этот материал имеет большую массу и низкую морозостойкость, не выдерживая температуры ниже -20 градусов. Кроме того, подошва из ПВХ плохо крепится к кожаному верху обуви, поэтому качественная обувь из кожи с подошвой из ПВХ сложна и дорога в производстве.

Подошвы из этиленвинилацетата (ЭВА, EVA)

Достоинства: ЭВА — очень легкий материал, обладающий хорошими амортизирующими свойствами. Используется в основном в детской, домашней, летней и пляжной обуви, а в спортивной обуви — в форме вставок, потому что способен поглощать и распределять ударные нагрузки.

Недостатки: С течением времени подошвы из ЭВА теряют свои амортизирующие свойства. Это происходит из-за того, что стенки пор разрушаются, и вся масса ЭВА становится более плоской и менее упругой. Также ЭВА не подходит в качестве материала для зимней обуви, поскольку этот материал очень скользкий и неустойчив к морозам.

Подошвы из термопластичной резины (ТПР, TPR)

Термопластичная резина — это обувная резина, сделанная из синтетического каучука, который прочнее, чем каучук натуральный, но не менее эластичен. Впрочем, современные технологии позволяют с помощью различных добавок повысить его гибкость.

Достоинства: Термопластичная резина обладает малой плотностью и, соответственно, меньшей массой, чем другие материалы. В ней нет сквозных пор, поэтому через нее не проходит влага. Однако поверхностные поры в ТПР есть, и они обеспечивают высокую теплозащиту. Кроме того, ТПР, как и другие пористые резины, — упругий материал, обеспечивающий хорошие амортизационные свойства. Благодаря этой характеристике обувь с подошвой из ТПР снимает излишнюю нагрузку на ноги и позвоночник.

Недостатки: Малая плотность материала может быть не только достоинством, но и недостатком. В случае с ТПР она ведет к тому, что подошва из этого материала не отличается особенно выдающимися теплозащитными свойствами. Кроме того, во влажную и морозную погоду подошва из термопластичной резины сильно скользит.

Подошвы из кожи (leather)

Подошвы из кожи

Достоинства: Кожаная подошва используется во всех типах обуви, включая детскую, домашнюю и модельную всех сезонов. Обувь на кожаной подошве отлично выглядит и позволяет ноге дышать, поскольку является природной мембраной.

Недостатки: При ношении во влажную погоду кожаная подошва может деформироваться, а уход за ней подразумевает постоянное использование специальных спреев и пропиток. Кожа обладает низкой износостойкостью, поэтому на кожаные подошвы рекомендуется установка профилактики, а для зимней обуви она обязательна, иначе без нее подошва будет скользить по льду и снегу и деформироваться еще быстрее.

Подошвы из тунита (tunit)

Подошвы из тунита

Достоинства: По внешнему виду, твердости и пластичности тунитовые подошвы похожи на кожаные, но лучше ведут себя в эксплуатации: почти не стираются и не промокают. На такие подошвы легко нанести рельеф, что придает им чуть большее сцепление с поверхностью, чем коже.

Недостатки: Но даже несмотря на это обувь на тунитовой подошве очень скользкая из-за высокой жесткости материала. Поэтому тунит используется при изготовлении только летней и весенне-осенней обуви клеевого метода крепления.

Подошвы из дерева (wood)

Подошвы из дерева

Достоинства: Дерево — это экологически чистый и очень гигиеничный материал, а деревянные подошвы имеют оригинальный внешний вид. Впрочем, в последнее время вместо дерева для изготовления обуви чаще используется клееная фанера. Она может быть из древесины березы, дуба, бука или липы и как материал легче поддается механической обработке, хорошо формуется и недорого стоит. Также популярностью пользуются подошвы с использованием пробкового материала. Имея с ними дело, надо понимать, что пробковое дерево из-за своей природной мягкости не может служить основным материалом для изготовления подошвы, поэтому пробка используется только для декоративной обтяжки.

Недостатки: Деревянные подошвы жесткие, быстро истираются и обладают плохой водостойкостью. При изготовлении таких подошв расходуется много материала. Обтяжка из пробки подвержена сколам и дефектам из-за мягкости материала.

Читайте также: