Установка трехпортового соленоида на ваз

Обновлено: 07.07.2024

Соленоиды не особенно экзотичны по своим возможностям, но они не так распространены, как два других члена семейства электромеханических устройств, а именно реле и двигатели. Поэтому, возможно, они не настолько понятны, как следовало бы, и разработчики могут быть склонны игнорировать их или избегать.

Большинство людей, которые работают с электроникой, вероятно, знают, что соленоид – это электромеханическое устройство, которое использует индуктивную обмотку для преобразования электрической энергии в линейное движение. Вы прикладываете напряжение, поршень движется. Но, как обычно, детали не так просты, как могли бы быть.

Примечание. Соленоиды также могут быть и вращательного типа, но в данной статье мы остановимся на линейных соленоидах. Кроме того, имейте в виду, что некоторые соленоиды могут приводиться в действие источником переменного напряжения, но в последующем обсуждении предполагается, что привод постоянного тока является более предпочтительным в низковольтных системах.

Принцип действия

Основополагающий принцип работы с соленоидом заключается в следующем: управляющий ток через обмотку заставляет плунжер (поршень) двигаться в направлении магнитного поля, то есть в область, покрытую обмоткой. Смена полярности приложенного напряжения не меняет направление движения, потому что типовой плунжер – это просто кусок металла (а не магнит), и поэтому он всегда притягивается (не отталкивается) от магнитного поля.

Если сила тяжести или что-то в вашей механической нагрузке не возвращает поршень в исходное положение, вам нужен соленоид с возвратной пружиной.

Втягивающий или толкающий?

Поскольку плунжер всегда движется к обмотке, разница между соленоидами втягивающего и толкающего типов должна основываться на оборудовании, прикрепленном к плунжеру, а не на направлении движения относительно основного корпуса соленоида:

Рисунок 1 Соленоиды втягивающего и толкающего типов

Рисунок 1 – Соленоиды втягивающего и толкающего типов

Отпускание или возврат

Что же нам делать со следующей схемой, найденной в техническом описании Delta Electronics?

Рисунок 2 Схема из технического описания соленоида

Рисунок 2 – Схема из технического описания соленоида

Вы можете быстро нее взглянуть и подумать, что соленоид можно вернуть в обесточенное положение, изменив полярность приложенного напряжения, но это нарушает принцип действия.

Delta Electronics говорит нам здесь о том, что мы можем добиться более быстрого отпускания путем изменения полярности напряжения – вы можете думать об этом обратном напряжении как о более сильном вытеснении затухающего в обмотке тока. (Помните, что вам нужно снять обратное напряжение после завершения затухания; в противном случае ток начнет течь в противоположном направлении, и вы снова включите соленоид.)

Об изменении полярности хорошо помнить при разработке схемы драйвера соленоида Вы можете легко включить эту функцию, подключив к соленоиду, вместо одного транзистора,H-мостовой драйвер.

В статье будет описано устройство соленоидов, сфера применения и другие вопросы, касающиеся этой радиодетали. Также в статье добавлен интересный файл и видеоролик по данной теме.

Соленоид с подключением

Описание и принцип работы соленоида

Какие бывают соленоиды

Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку. Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид.

Соленоид и сфера применения.

Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности. Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода.

Описание и принцип работы соленоидов

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Магнитное поле, создаваемое внутри.

Конструкция линейного соленоида вытяжного типа

Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.

Вращательный соленоид

Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях). Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

Обычно доступные ротационные соленоиды имеют перемещения 25, 35, 45, 60 и 90 o, а также многократные перемещения к определенному углу и от него, такие как самовосстановление в двух положениях или возврат в нулевое вращение, например, от 0 до 90- до -0 ° , самовосстановление в 3 положениях, например от 0 ° до +45 ° или от 0 ° до -45 °, а также фиксация в 2 положениях.

Соленоид в металлическом корпусе

Вращающиеся соленоиды производят вращательное движение, когда под напряжением, обесточено, или изменение полярности электромагнитного поля изменяет положение ротора с постоянными магнитами. Их конструкция состоит из электрической катушки, намотанной вокруг стальной рамы с магнитным диском, соединенным с выходным валом, расположенным над катушкой.

Описание и принцип работы соленоидов

Когда катушка находится под напряжением, электромагнитное поле генерирует множество северных и южных полюсов, которые отталкивают соседние постоянные магнитные полюса диска, заставляя его вращаться на угол, определяемый механической конструкцией вращающегося соленоида.

Вращающиеся соленоиды используются в торговых автоматах или игровых автоматах, для управления клапанами, затворами камер со специальными высокоскоростными, низкоэнергетическими или регулируемыми позиционирующими соленоидами с высоким усилием или крутящим моментом, такими как те, которые используются в точечно-матричных принтерах, пишущих машинках, автоматах или в автомобилях.

Схема устройства соленоида.

Электромагнитное переключение

Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.

Устройство электромагнитного клапана.

Снижение энергопотребления соленоида

Описание и принцип работы соленоидов

Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 2 R (закон Ома), и это также необходимо учитывать.

Рабочий цикл соленоида

Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.

Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения. В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.

Соленоид в упаковке

Соленоиды косвенного действия

Данный вид соленоида является более сложным, и понадобится больше времени для объяснения механизма его работы. Проще говоря, соленоид косвенного действия состоит из двух клапанов, соединённых в один механизм. Основной клапан (main valve) – это золотник, который работает по описанному выше принципу, второй используемый механизм – это управляющий клапан (pilot valve), который находится между золотником и электромагнитом. Управляющий клапан представляет собой маленький соленоид прямого действия, который активирует нажатие большого золотника. Обратите внимание, что соленоид, показанный на данном изображении, является соленоидом прямого действия, так как он напрямую воздействует на управляющий клапан, но вся конструкция в сборе является соленоидом косвенного действия.

Основное различие между соленоидами прямого действия и косвенного действия в том, как они взаимодействуют с механическими частями маркера. Соленоиды прямого действия работают напрямую с элементами механизма маркера. Соленоиды косвенного действия используют воздушный поток для управления золотником. Основная причина существования соленоидов косвенного действия – это их невероятно низкое потребление энергии по сравнению с соленоидами прямого действия. Например, если соленоиду прямого действия необходимо 4 ватта для воздействия на механизм, то соленоиду косвенного действия для того же воздействия нужно всего 0,5 ватта.

Схема работы соленоида.

Далее соленоиды делятся по количеству потоков. Для функционирования у соленоида должно быть хотя бы одно отверстие, через которое воздух поступает в соленоид, одно отверстие, из которого воздух поступает в механизм, и одно отверстие для сброса воздуха. Но в большинстве случаев используется конструкция с двумя отверстиями для подачи воздуха в механизм маркера и двумя отверстиями сброса воздуха. В настоящее время, в основном, используются три основных типа соленоидов:

  1. Четырёхпоточный золотниковый клапан (four way spool valve). Этот тип используется в большинстве полностью электропневматических маркеров, где для движения поршня назад и вперёд используется воздух. Например Ego, Angel, Shocker, Dye Matrix и т.п. Неправильно названный тривей (three way valve) на кокерах, тоже является примером четырёхпоточного поршня.
  2. Трехпоточный золотник, закрытый в состоянии покоя (3-way spool normally closed). Это трехпоточный клапан, который подаёт воздух при подаче на него напряжения. Когда этот соленоид в состоянии покоя, он не подаёт никакого давления, например pVI Shocker, Invert Mini.
  3. Трёхпоточный золотник, открытый в состоянии покоя (3-way spool normally open). Это трёхпоточный клапан, который подаёт давление в состоянии покоя, и перекрывает поток воздуха, когда на него подаётся напряжение, например Ion.

Управляющий клапан в соленоиде всегда является трёхпоточным, закрытым в состоянии покоя. Когда на соленоид подаётся напряжение, управляющий клапан открывается и подаёт воздух для того, чтобы сдвинуть золотник, который, в свою очередь, может быть и трехпоточным и четырёхпоточным.

Каждый соленоид косвенного действия делится на три сегмента: катушка (coil), управляющий клапан (pilot) и золотник (spool). Катушка – это единственная электромагнитная часть всего механизма. Состоит она из медной проволоки, обмотанной вокруг металлического кожуха, внутри которого находится металлический стержень, являющийся противоположным магнитным компонентом клапана. Стержень изготавливается из стали и имеет пружину с одного конца. На противоположном конце соленоида находится золотник, который является клапаном и основной движущейся частью соленоида. Золотники обычно изготавливаются из латуни или алюминия в зависимости от производителя.

Также на золотнике имеются разнообразные прокладки для того, чтобы перенаправлять воздушные потоки. И, наконец, последняя часть соленоида – управляющий клапан, который является “посредником” между движением стержня катушки и золотника. Основной компонент для управляющего клапана – круглый поршень, который передвигает золотник в открытое положение. Поршень представляет собой маленький пластиковый диск с прокладкой вокруг него. За поршнем находится маленький привод, деталь для удержания привода на месте и маленькая заглушка, находящаяся внутри привода. Большинство этих компонентов, как и корпус управляющего клапана, изготавливается из полимеров для того, чтобы улучшить скольжение и уплотнение.

В заключение статьи, что же такое двелл? Это время, в течение которого на соленоид подаётся напряжение (соответственно, путь болта маркера в переднее положение + время, которое болт находится в переднем положении, выпуская воздух). При сильном понижении параметра двелл вам придётся компенсировать более короткое время пребывания болта в переднем положении путём повышения рабочего давления маркера, что не будет полезным для вашего маркера. Слишком завышенное значение параметра двелл приведёт к перерасходу воздуха, заряда батареи и большему износу самого соленоида.

Как проверить работоспособность

Проводник, имеющий форму спирали, в котором возникает магнитное поле, называется соленоидом. Применяется в автомобилях и предназначен для переключения датчиков и клапанов на расстоянии. Таким образом, если клапан или какой-либо датчик перестал функционировать, то, прежде всего, проверке подвергают соленоид.

Для проверки потребуется следующее:

  • компрессор;
  • оборудование для диагностики;
  • различные инструменты – отвертки, ключи и другие.

Для проверки соленоида его необходимо переключить в режим “омметра”. Отыскать соленоид в автомобиле можно посредством технической документации, которая идет с каждым транспортным средством. Соленоид должен быть подключен к бортовому компьютеру. Обратить внимание и на то, в каком состоянии находится клапан. Он может быть закрытым или открытым.

Электромагнитный клапан.

Наличие короткого замыкания становится причиной низкого сопротивления. Его можно измерить и для этого необходимо отыскать электродвижущую силу, а также ее внутреннее сопротивление. На основании полученных сведений выполнить требуемые расчеты. Для расчета короткого замыкания потребуется лишь тестер.

Соленоиды не особенно экзотичны по своим возможностям, но они не так распространены, как два других члена семейства электромеханических устройств, а именно реле и двигатели. Поэтому, возможно, они не настолько понятны, как следовало бы, и разработчики могут быть склонны игнорировать их или избегать.

Большинство людей, которые работают с электроникой, вероятно, знают, что соленоид – это электромеханическое устройство, которое использует индуктивную обмотку для преобразования электрической энергии в линейное движение. Вы прикладываете напряжение, поршень движется. Но, как обычно, детали не так просты, как могли бы быть.

Примечание. Соленоиды также могут быть и вращательного типа, но в данной статье мы остановимся на линейных соленоидах. Кроме того, имейте в виду, что некоторые соленоиды могут приводиться в действие источником переменного напряжения, но в последующем обсуждении предполагается, что привод постоянного тока является более предпочтительным в низковольтных системах.

Принцип действия

Основополагающий принцип работы с соленоидом заключается в следующем: управляющий ток через обмотку заставляет плунжер (поршень) двигаться в направлении магнитного поля, то есть в область, покрытую обмоткой. Смена полярности приложенного напряжения не меняет направление движения, потому что типовой плунжер – это просто кусок металла (а не магнит), и поэтому он всегда притягивается (не отталкивается) от магнитного поля.

Если сила тяжести или что-то в вашей механической нагрузке не возвращает поршень в исходное положение, вам нужен соленоид с возвратной пружиной.

Втягивающий или толкающий?

Поскольку плунжер всегда движется к обмотке, разница между соленоидами втягивающего и толкающего типов должна основываться на оборудовании, прикрепленном к плунжеру, а не на направлении движения относительно основного корпуса соленоида:

Рисунок 1 Соленоиды втягивающего и толкающего типов

Рисунок 1 – Соленоиды втягивающего и толкающего типов

Отпускание или возврат

Что же нам делать со следующей схемой, найденной в техническом описании Delta Electronics?

Рисунок 2 Схема из технического описания соленоида

Рисунок 2 – Схема из технического описания соленоида

Вы можете быстро нее взглянуть и подумать, что соленоид можно вернуть в обесточенное положение, изменив полярность приложенного напряжения, но это нарушает принцип действия.

Delta Electronics говорит нам здесь о том, что мы можем добиться более быстрого отпускания путем изменения полярности напряжения – вы можете думать об этом обратном напряжении как о более сильном вытеснении затухающего в обмотке тока. (Помните, что вам нужно снять обратное напряжение после завершения затухания; в противном случае ток начнет течь в противоположном направлении, и вы снова включите соленоид.)

Об изменении полярности хорошо помнить при разработке схемы драйвера соленоида Вы можете легко включить эту функцию, подключив к соленоиду, вместо одного транзистора,H-мостовой драйвер.

Читайте также: