Как проверить дмрв паджеро 4 дизель 4м41

Обновлено: 09.05.2024

В 1999 году для Mitsubishi Pajero 3 был разработан новый 3.2-литровый дизельный двигатель 4М41. За основу был взят Митсубиси 4М40, в котором увеличили диаметр цилиндров с 95 мм до 98.5 мм. В блок цилиндров установили коленвал с ходом поршня 105 мм вместо 100 мм на 4М40, высота поршней снизилась до 47.5 мм. В итоге, имеем 4-цилиндровый дизель с рабочим объемом 3.2 литра.

Блок накрывает новая алюминиевая головка с непосредственным впрыском топлива. Здесь применены два распредвала и 4 клапана на цилиндр. Диаметр впускных клапанов 33 мм, выпускных клапанов — 31 мм, а толщина ножки клапана 6.5 мм.
Проверять и при необходимости регулировать клапаны нужно после каждых 15 тыс. км. Зазоры клапанов на холодную такие: впуск 0.1 мм, выпуск 0.15 мм.
Вращает распредвал однорядная цепь ГРМ, которая далеко не так надежна, как на 4М40, и начинает шуметь ближе к 200 тыс. км.

Это турбодизель и здесь изначально стояла турбина MHI TF035HL.
В результате всех изменений относительно старого дизеля 4М40, удалось добиться увеличения мощности и крутящего момента во всем диапазоне, улучшения экологических показателей и снижения расхода топлива. Мощность достигла 165 л.с. при 4000 об/мин, а крутящий момент 351 Нм при 2000 об/мин.

С сентября 2006 года начался выпуск версии 4М41 с Common rail и с турбиной IHI RHV5S с изменяемой геометрией. Инженеры доработали впускные каналы, установили новый впускной коллектор с клапанами завихрения, изменили форму камеры сгорания, улучшили систему EGR. Это повысило экологический класс и добавило мощности, теперь ее 175 л.с. при 3800 об/мин и крутящий момент 382 Нм при 2000 об/мин.
В 2010 году пошли 4М41 с модифицированными турбинами IHI RHV5S с изменяемой геометрией. Мощность возросла до 200 л.с. при 3800 об/мин, а крутящий момент до 441 Нм при 2000 об/мин.

Начиная с 2015 года, компания Mitsubishi заменяет 3.2-литровые дизели 4М41 на более компактные 2.4-литровые 4N15.

Проблемы и недостатки дизельных двигателей Митсубиси 4М41

1. Шум цепи ГРМ. Обычно он появляется при пробегах 150-200 тыс.км и свидетельствует о том, что нужно менять цепь пока не порвалась.
2. Не заводится, дымит, пропала мощность. Нужно смотреть в сторону ТНВД, скорей всего ваша низкокачественная солярка убила его. Обычно он служит +/- 300 тыс. км или больше.
3. Свист. Вероятно, свистит растянутый ремень генератора. Обычно спасает его замена или подтяжка. Также примерно каждые 100 тыс. км разваливается шкив коленвала.
Форсунки живут более 100 тыс. км., ресурс турбины примерно 300 тыс. км, но может пройти и больше. Каждые 40-50 тыс. км нужно чистить клапан EGR, от низкого качества топлива он быстро загаживается и забивает нагаром впускной коллектор. Часть владельцев поступает более радикально, и глушит ЕГР.
Чтобы ваш дизель 4М41 жил долго и счастливо, важно лить хорошее топливо, качественное масло и регулярно обслуживать мотор. В таком случае он будет ездить практически без проблем, ресурс 4М41 в хороших условиях может перевалить за 400 тыс. км.

Номер двигателя 4М41

Номер двигателя 4M41

Ищите место с номером мотора вот здесь:

Тюнинг двигателя 4М41

Чип-тюнинг

Чиповка старого и изношенного мотора обычно до добра не доводит, нужно хорошо подумать, прежде чем дополнительно нагружать свой 4М41. Для свежих версий можно прошить двигатель мощностью 165 л.с. в 190 л.с., крутящий момент возрастет до 410-420 Нм. Модели мощностью 190-200 л.с. можно прошить до 240 л.с. при 3500 об/мин, а крутящий момент достигнет 500 Нм при 2000 об/мин.

Предыстория такая, при длительном движении по трассе стала вылизать ошибка, которая проявляла себя вспыхиванием трех ламп на панели прибора — чек, абс и курсовая устойчивость, в общем см на фото ниже, при этом терялась мощность двигатели и машина очень плохо разгонялась.

Поиски неисправности были долгими, машину не получалось продиагностировать через разъем, грешили на клапан ЕГР, в итоге я его заглушил, но ошибка не прошла, поэтому искал дальше. Случайно удалось поговорить с владельцем такого же Паджеро 3, он поведал мне занимательную историю о потере мощности двигателя и об ошибке, немного похожую на мою, и как съездил к какому то мегадиагносту, который починил это за 15 минут.

Дело было в датчике коллектора (впускного), его забивает сажей, и он перестает работать, он подключен через трубку к датчику Буста.

Вот так выглядеть датчик коллектора на экзисте, его артикул ME 191373

datchik-kollktora

В живую на Padjero 3, можно найти вот тут (фото ниже)

Выкручивает с помощью головки на 22 или на 24, не помню к сожалению, рожковым ключом не смог выкрутить, пришлось снять трубочку и крутить головкой. Щуп масла мотора тоже вытащил. На фото ниже трубка еще не снята.

Выкрутил, попробовал, не продувается.

С помощью баллона для прочистки карбюратора, типа Карбклинера, почистил накопившуюся внутри сажу, стал продуваться. Аккуратно вкрутил обратно в коллектор, присоединил трубку обратно, ошибка пропала , машина как мне показалось стала бодрее разгоняться после 80.

Ошибка меня доставала около полугода, официалы сказали что нужно чистить впускной коллектор, скорее всего все забито сажей, но пока что обошелся только чисткой датчика коллектора и глушением клапана ЕГР, в планах еще почистить дроссельную заслонку.

В прошлой статье, из серии Чип-тюнинг, мы рассказывали о Mitsubishi Fuso Canter 4.9L TD. Сегодня, достав архивные материалы, автомобиль заезжал в начале лета, упомянем об ещё одном дизельном Mitsubishi.

Итак, Mitsubishi Pajero IV 2007 года выпуска, появился в нашем сервисе с горящем на панели приборов CHECK ENGINE. Владелец автомобиля не так давно поменял клапан рециркуляции отработавших газов и как ему казалось, старая проблема вернулась вновь - автомобиль не развивал обороты выше 2000-2500, толком не ехал.

Компьютерная диагностика Mitsubishi Pajero 3.2L TD

Подключаем в диагностическому разъёму мультимарочный сканер ScanDoc.

. сразу считываем и сохраняем идентификаторы блока управления и его программного обеспечения.

Считываем коды неисправностей из ЭБУ двигателя:

  • P0403 - Система рециркуляции отработавших газов (EGR) - неисправность в цепи
  • U1101 - T/M таймаут CAN / Не оборудовано

Появление второй ошибки осталось загадкой, она удалилась навсегда. А на счёт первой, хозяин авто оказался прав, снова появилась ошибка по клапану ЕГР.

Убедившись что ошибка возникает именно из-за него, а не из-за электропроводки и других возможных причин, мы решили заглушить каналы рециркуляции и прошить блок управления модифицированной прошивкой, с отключением ЕГР.

Модификации двигателя 4M41 и как заглушить EGR

Под капотом данного Mitsubishi Pajero, находится дизельный, турбированный двигатель 3.2L. Код двигателя 4M41, а его характеристики следующие:

  • Объём двигателя - 3200 см.куб.
  • Мощность двигателя - 175 л.с. / 3800 об.мин
  • Крутящий момент - 382 Нм / 2000 об.мин

Примечательно, что пресс-релиз этого мотора, состоялся в далёком 1999 году и с тех пор он претерпел несколько модификаций. Естественно, являясь частью двигателя, менялась и система рециркуляции - EGR.

На двигателях 4M41, встечаются системы рециркуляции с вакуумным клапаном и электрическим, с шаговым мотором.

Зачем двигателю нужна система EGR

При высокой температуре, сгорающей в камере сгорания топливовоздушной смеси, образуется большое количество оксидов азота (NOх). Система EGR направляет часть отработавших газов из выпускного канала головки блока цилиндров, через впускной коллектор, обратно в камеры сгорания, тем самым снижая температуру сгорания топливовоздушной смеси, вследствие чего происходит снижение концентрации оксидов азота. А если кратко, то для экологичности )).

Система EGR с вакуумным клапаном

Такая система рециркуляции отработавших газов (EGR) состоит из вакуумного клапана рециркуляции ОГ, вакуумного насоса, электромагнитных клапанов №1 и №2.
Клапан рециркуляции ОГ (EGR) управляется разряжением внутри клапана, создаваемым электромагнитными клапанами №1 и №2, которые в свою очередь, управляются блоком управления, в соответствии с условиями работы двигателя и на основе данных, поступающих от различных датчиков.

Двигатель 4M41 - Принцип работы вакуумной EGR

  • 1. Двигатель
  • 2. Турбокомпрессор
  • 3. Клапан рециркуляции отработавших газов EGR
  • 4. Электромагнитный клапан EGR №2 (Выкл. - Вкл.)
  • 5. Электромагнитный клапан EGR №1 (С коэффициентом заполнения цикла)
  • 6. Вакуумный насос
  • 7. Электронный блок управления двигателем
  • A. Угол положения педали акселератора
  • B. Частота вращения двигателя
  • C. Температура впускного воздуха
  • D. Температура охлаждающей жидкости
  • E. Температура топлива
  • F. Сигнал с датчика абсолютного давления MAP
  • G. Скорость автомобиля
  • H. Положения выключателя кондиционера
  • I. Положение выключателя блокировки стартера
  • J. Впускной воздух
  • K. Выхлопные газы

Для механической коробки переключения передач, схема соединений компонентов системы EGR, следующее.

Двигатель 4M41 - Схема соединений компонентов системы EGR, для МКПП

. а ниже, для автоматической коробки.

Двигатель 4M41 - Схема соединений компонентов системы EGR, для АКПП

Проверить систему можно так:

  1. Заведите двигатель и прогрейте его до температуры охлаждающей жидкости 65°С или выше.
  2. Поверните выключатель кондиционера в положение "OFF" (ВЫКЛ.).
  3. Переместите рычаг селектора в положение "P" (Стоянка).
  4. Проверьте работу клапана рециркуляции отработавших газов (EGR)
  1. Состояние двигателя - Работа на холостом ходу без нагрузки. Состояние клапана рециркуляции отработавших газов (EGR) - Открыт
  2. Состояние двигателя - Резкое увеличение оборотов двигателя. Состояние клапана рециркуляции отработавших газов (EGR) - Закрыт (Диафрагма опускается)

Проверка сопротивления электромагнитных клапанов:

  • Сопротивление между выводами электромагнитных клапанов должно быть около 36-44 Ом (при 20°С)

А вот так выглядит вакуумный клапан ЕГР, на двигателе 4M41.

Система EGR с электрическим клапаном

Принцип действия такой системы следующий. Клапан рециркуляции ОГ (EGR) закрыт и рециркуляции отработавших газов не происходит, при одном из следующих условий:

  • Низкая температура охлаждающей жидкости двигателя
  • Двигатель работает на режиме холостого хода
  • Дроссельная заслонка открыта на большой угол

На всех остальных режимах клапан рециркуляции отработавших газов (EGR) открыт на определённую блоком управления величину и происходит рециркуляция отработавших газов.

Двигатель 4M41 - Принцип работы электрической EGR

  • 1. Замок зажигания
  • 2. ЭБУ двигателя
  • 3. Клапан EGR
  • 4. Датчик температуры охлаждающей жидкости двигателя
  • 5. Турбокомпрессор
  • 6. Охладитель EGR
  • 7. Интеркулер
  • 8. Топливный насос
  • 9. Педаль акселератора (газа)
  • A. Сигнал частоты вращения двигателя
  • B. Сигнал угла положения педали акселератора
  • C. Сигнал управления впрыском топлива
  • D. Управляющий сигнал клапана EGR
  • E. Сигнал температуры охлаждающей жидкости двигателя
  • F. Выхлопной газ
  • G. Впускной воздух
  • H. Охлаждающая жидкость двигателя

Схема соединений элементов системы рециркуляции, с электрическим клапаном, следующая.

Двигатель 4M41 - Схема соединений компонентов системы EGR с электрическим клапаном

Проверить систему можно так:

  • При включении зажигания (не запуская двигатель), обычно слышен звук срабатывания шагового электродвигателя, из клапана рециркуляции отработавших газов (EGR). Если звук срабатывания шагового электродвигателя не слышен, в первую очередь нужно проверить его цепь питания. Если цепь в норме, то возможно, причиной отсутствия звука является неисправность шагового электродвигателя или ЭБУ.

Проверка сопротивления обмотки:

Проверка клапана ЕГР на Mitsubishi

  1. Отсоедините разъем клапана рециркуляции отработавших газов (EGR).
  2. Измерьте сопротивление между выводом №2 и выводом №1 или выводом №3 разъема со стороны клапана рециркуляции отработавших газов (EGR). Номинальное значение: 10 – 20 Ом (при 20°С)
  3. Измерьте сопротивление между выводом №5 и выводом №4 или выводом №6 разъема со стороны клапана рециркуляции отработавших газов (EGR). Номинальное значение: 10 – 20 Ом (при 20°С)

Сам клапан ЕГР может располагаться вот так.

Двигатель 4M41 - Электрический клапан ЕГР, первый вид

Двигатель 4M41 - Электрический клапан ЕГР, второй вид

Как заглушить ЕГР на Mitsubishi Pajero IV с двигателем 4M41

На автомобиле, который стоял у нас в сервисе, клапан выглядел как на предыдущей фотографии.

Снимаем с него разъём, откручиваем четыре болта и вот он в руках. Как видно, все каналы и трубки системы рециркуляции в саже.

В саже и сам клапан ЕГР.

По виду прокладки, вырезаем заглушку с отверстиями под четыре болта и без прямоугольного отверстия )).

Собираем всё в обратной последовательности и приступаем к программному отключению системы.

Чип-тюнинг Mitsubishi Pajero 3.2L TD

Тубродизелем этого автомобиля, управляет электронный блок управления Denso, собранный на процессоре SH7058. Наше оборудование позволяет производить чтение и запись прошивки, с этого ЭБУ, через диагностический разъём.

Запускам на компьютере программу загрузчик, подключаемся к автомобилю с помощью адаптера OpenPort 2.0 и считываем заводскую прошивку, сток.

По идентификаторам стока, покупаем и скачиваем модифицированную прошивку. Выбор клиента:

  • Ультрадинамичная версия, с отключенным контролем системы рециркуляции (EGR). Сглажена "турбояма", уменьшено время отклика на приращение дросселя, так называемая "задемпфированность педали газа". Увеличение крутящего момента порядка 15-20% субъективно выражено в значительном увеличении как эластичности при частичных дросселях и снижении вероятности кик-дауна, так и в приросте динамики на полном дросселе, что в целом меняет тактико-технические характеристики мотора и увеличивает комфорт при передвижении.

Записываем модифицированную прошивку в ЭБУ двигателя. И отдаём авто владельцу.

Работы были проведены с использованием программного обеспечения производства АРС ADACT, клиенту выдан сертификат подлинности ПО.


Этот проект появился из-за нежелания покупать бывшую в употреблении около 30 (тридцати) лет деталь за совсем немаленькую сумму в 3000 — 5000 руб. Можно сказать что это будет проба пера в схемотехнике и программировании микроконтроллеров. Если интересно — продолжение под катом.

Осторожно много фото!

Итак, начинаем подпирать велосипеды костылями.

Вводные данные

BMW E30 в кузове купе 1986г с мотором M10B18 (4 цилиндра, 1.8л, инжектор):


Проблемы

1. Чихает
2. Не едет
3. Жрет и не толстеет

Немного теории

Наша машинка оснащена чудом Немецкой промышленности системой распределенного впрыска L-Jetronic.

Система распределенного впрыска L-Jetronic является системой импульсного впрыска с электронным управлением количественным и качественным составом топливно-воздушной смеси. Для обеспечения импульсного впрыска топлива в системе применены форсунки с электромагнитным управлением.


Ну, распределённого — это громко сказано, тут все 4 форсунки соединены параллельно и, соответственно пшикают одновременно, хотя да, это я придираюсь, установлены они каждая напротив своего цилиндра в разных местах впускного коллектора — т.е. распределённо. Мозг здесь довольно глупенький — холостым ходом, зажиганием, прогревочными оборотами не управляет.

Все что ему подвластно — это несколько датчиков и форсунки.


Принцип действия его довольно прост: воздух потребляемый мотором проходит через входное отверстие, и в зависимости от интенсивности (считай массы воздуха в единицу времени) отклоняет измерительную заслонку на определенный угол. На оси заслонки установлен подвижный контакт, который и бегает по дорожке нашей многострадальной платы из первой картинки.

Варианты решения проблемы:

1. Купить новый ДМРВ — стоит космических денег 35000-60000 руб, сопоставимо со стоимостью авто.
2. Купить БУ ДМРВ — 30 лет эксплуатации, никаких гарантий, стоит 3000 — 5000 руб.
3. Купить новую плату (неоригинал, делают малыми партиями) — цена 300р+пересыл, выглядит так:


Как видно, конструкция отличается от заводской. Надежность под вопросом, в интернете можно найти негативные отзывы о якобы недолговечности сего решения, подтвержденные фотографиями изношенных плат подобного типа.

4. Купить ДМРВ современного типа без движущихся деталей + так называемый конвертер — цена вопроса немного отпугивает, так же необходимо будет адаптировать впускной тракт, наращивать длину патрубков и т. д.

5. Придумать что-то своё.

Для меня выбор был очевиден.

Я решил оставить механическую часть, так как никаких признаков износа не обнаружил. Думаю она прослужит дольше чем остальная машина.

Задача немного упростилась, необходимо преобразовывать угол поворота в напряжение. Хотя нет, постойте, не все так просто… Дело в том что как я уже говорил мозг здесь довольно глупенький и, соответственно на вход он хочет получать максимально готовые данные. Это отразилось в конструкции ДМРВ — график зависимости выходного напряжения от угла поворота оси заслонки нелинеен, и дополнительная сложность — он масштабирован сопротивлением датчика температуры воздуха, который так же встроен в ДМРВ. Соответственно характеристика датчика должна меняться в зависимости от температуры воздуха.

Поиск готового схемотехнического решения не привел к успеху. Проблема с износом ДМРВ подобного типа многих коснулась, много тем на специализированных форумах где на десятках страниц люди обсуждают как же её решить.

Для начала хотелось бы получить данные об угле поворота оси. Переменные резисторы и прочую механику я сразу отбросил, как ненадежные. Оптический датчик — хорошо, но пыль может доставить неприятности, а пыли в дороге хватает. Магнитные датчики — вероятно это то что нужно.

Нашёл вот такой: KMA-200.


С ходу не смог купить его в своей глуши. И случайно наткнулся на вот такой готовый ДПДЗ в котором и применен KMA-200.


В нагрузку получаю магнит с креплением, датчик уже на плате с необходимой обвязкой, покрыт лаком, защищающим от влаги и статики. Нашёл кстати похожий проект.

На выходе у такого датчика напряжение от 0 до 5 вольт зависимость от угла поворота линейная. Нужно как-то преобразовать ее в нужную нам характеристику. Аналоговые схемы в принципе могли бы обеспечить это, но были бы довольно сложны в проектировании и наладке, например какой-нибудь интегратор на операционниках с термокомпенсацией, но это для меня сложновато…

Тут я вспомнил что у меня есть горсть ATiny13, почему бы не использовать их?

Набросал и смоделировал схемку:


Немного о схеме.

  • Микроконтроллер тактируется от внутреннего генератора частотой 8МГц.
  • Использованы 2 канала АЦП, считывается угол поворота оси заслонки и уровень напряжения на резистивном делителе частью которого является датчик температуры.
  • Выходной сигнал ШИМ с частотой около 18кГц

Зачем полевик спросите вы? А кто его знает отвечу вам я! Лишним не будет. С помощью этой схемы я управлял мощной нагрузкой в виде нескольких автомобильных ламп соединенных параллельно просто для проверки что она это тоже может.

Вообще все детали у меня были в наличии кроме датчика поворота.

Время писать прошивку! Это первая моя прошивка МК, так что конечно все не оптимально, и конечно я выбрал немного странноватый инструмент BascomAVR, в котором писать приходится на каком-то псевдо-кубейсике. Очевидно встроенный туда компилятор не очень оптимизирован, прошивка получается жирная, и полиномиальная интерполяция которую я хотел туда впихнуть к сожалению не влезла. Пришлось реализовать аппроксимацию тремя прямыми отрезками. Почему тремя? Потому что больше не влезло (Bascom + 1 кб flash).


Чтобы выяснить уравнения прямых буквально минут за 10 набросал тупую софтинку в Qt Creator, пошевелил контрольными точками, определился с положением прямых.


Красная линия это искомая характеристика, синяя это аппроксимация прямыми. Далее компиляция и заливка прошивки в эмулятор. Все шевелится так как я и ожидал.

На скорую руку разводим плату и расчехляем лазерный утюг.


Травим, паяем, исправляем косяки разводки (ну куда же без них).



Внимательный читатель и опытный радиолюбитель заметит 2 ошибки которые я допустил при запайке.

Далее включение, проверка основных параметров, и суточная прогонка в разных режимах. Проверка показала что все работает так как и задумывалось. Время сборки и установки на авто.




После настройки подстроечником, машина начинает работать так как и должна, в дальнейшем был проверен расход бензина и динамика, все оказалось в норме, те соответствовало заявленным характеристикам. Машинка каталась на юга из средней полосы России, никаких проблем не появилось.


Я считаю, что первый опыт программирования микроконтроллеров, да в принципе и создания схем, был для меня удачен. Конечно есть огрехи: например выбор среды программирования. В следующем проекте я уже использовал CVAVR, прошивка получается намного компактнее. Выбор микроконтроллера тоже можно было бы назвать не удачным, хотя я его и не выбирал, он у меня был, и было желание его использовать. Сразу по окончанию работы с этим проектом я заказал несколько ATiny85, которые имеют в 8 раз больше памяти, но пока шла посылка эту машину внезапно купили, и ДМРВ так и остался с не идеальным алгоритмом).

Читайте также: