Фазовый переход лямбда типа

Обновлено: 05.07.2024

ФА́ЗОВЫЙ ПЕРЕХО́Д, пе­ре­ход ме­ж­ду со­стоя­ния­ми (фа­за­ми) фи­зич. сис­те­мы из боль­шо­го чис­ла час­тиц, про­ис­хо­дя­щий при оп­ре­де­лён­ных зна­че­ни­ях внеш­них па­ра­мет­ров (темп-ры, дав­ле­ния, маг­нит­но­го по­ля и др.). Воз­мож­ные для дан­ной сис­те­мы фа­зы ха­рак­те­ри­зу­ют­ся па­ра­мет­ра­ми со­стоя­ния и гра­фи­че­ски изо­бра­жа­ют­ся на фа­зо­вой диа­грам­ме, на ко­то­рой фа­зы от­де­ле­ны друг от дру­га кри­вой Ф. п. (фа­зо­вой гра­ни­цей), при­чём разл. фа­зам со­от­вет­ст­ву­ют разл. урав­не­ния со­стоя­ния.


Многочисленные экспериментальные исследования показали, что все фазовые превращения сопровождаются скачкообразными изменениями каких-либо макроскопических величин, характеризующих свойства вещества. При теоретическом рассмотрении выяснилось, что эти параметры могут быть выражены через частные производные первого и второго порядка от удельного термодинамического потенциала Гиббса .

Это обстоятельство было положено в основу классификации фазовых переходов, предложенной П.Эренфестом в 1933 году.


Фазовые переходы, при которых первые производные удельного термодинамического потенциала меняются скачкообразно, называются фазовыми переходами первого рода.


Фазовые переходы, при которых первые производные функции остаются непрерывными, а вторые производные меняются скачкообразно, называются фазовыми переходами второго рода.

Как уже отмечалось, за каждой абстрактной производной термодинамического потенциала Гиббса стоит хорошо измеряемый макроскопический параметр вещества. Проследим, как проявляется это соответствие для фазовых переходов первого и второго рода.

Фазовые переходы первого рода

Согласно уравнениям (12.22) и (12.23)


Поэтому фазовые превращения первого рода сопровождаются скачкообразными изменениями либо удельной энтропии , либо удельного объема, либо обеих этих величин вместе. Скачок удельной энтропии означает, что фазовый переход происходит с выделением или поглощением количества теплоты. Сама величина скачка удельной энтропии равна


где – температура фазового перехода. В зависимости от вида фазового превращения удельную теплоту фазового перехода называют либо теплотой кристаллизации, либо теплотой возгонки, либо теплотой испарения и т.п. Скачок удельного объемаозначает, что плотности разных фаз вещества различаются между собой:. В литературе фазовые переходы первого рода называются так же прерывными превращениями [1].

Фазовые переходы второго рода


При фазовых превращениях второго рода претерпевают разрыв все или некоторые вторые производные , такие как


Каждой из этих производных соответствует физическая величина, которая может меняться скачком, при фазовом переходе второго рода, это


• удельная теплоемкость ;


• термический коэффициент объемного расширения ;


• термический коэффициент сжатия вещества

В литературе фазовые переходы второго рода называются также непрерывными превращениями или - переходами Последнее название появилось потому, что в окрестности температуры фазового перехода график зависимости удельной теплоемкостиот температуры напоминает греческую букву. Температуру непрерывного фазового перехода, зависящую от давления, называют-точкой или точкой Кюри.

ФА́ЗОВЫЙ ПЕРЕХО́Д, пе­ре­ход ме­ж­ду со­стоя­ния­ми (фа­за­ми) фи­зич. сис­те­мы из боль­шо­го чис­ла час­тиц, про­ис­хо­дя­щий при оп­ре­де­лён­ных зна­че­ни­ях внеш­них па­ра­мет­ров (темп-ры, дав­ле­ния, маг­нит­но­го по­ля и др.). Воз­мож­ные для дан­ной сис­те­мы фа­зы ха­рак­те­ри­зу­ют­ся па­ра­мет­ра­ми со­стоя­ния и гра­фи­че­ски изо­бра­жа­ют­ся на фа­зо­вой диа­грам­ме, на ко­то­рой фа­зы от­де­ле­ны друг от дру­га кри­вой Ф. п. (фа­зо­вой гра­ни­цей), при­чём разл. фа­зам со­от­вет­ст­ву­ют разл. урав­не­ния со­стоя­ния.

В статье изложена теория фазовых переходов второго рода, условия, характеристики и суть процесса. С практической точки зрения изучение объекта позволяет предсказывать свойства одних фаз вещества по характеристикам других.

Ключевые слова

ТЕРМОДИНАМИКА, ФАЗОВЫЕ ПЕРЕХОДЫ, ПОТЕНЦИАЛ ГИББСА, УРАВНЕНИЯ ЭРЕНФЕСТА, МОДЕЛЬ ИЗИНГА, СВЕРХТЕКУЧЕСТЬ

Введение

Фазовым в термодинамике называется переход вещества из одной термодинамической фазы в другую при изменении внешних условий (температуры, давления, магнитного и электрического полей и т. д.). Различают фазовые переходы двух видов:

  1. Фазовые переходы первого рода. Характеризуются скачкообразным изменением таких термодинамических характеристик вещества, как плотность и концентрация в зависимости от температуры и давления. При этом в единице массы выделяется или поглощается определенное количество теплоты (теплоты перехода). Поскольку энергия и объем являются первыми производными от свободной энергии по температуре и давлению, то при этих фазовых переходах первые производные свободной энергии являются разрывной функцией (отсюда следует название). Примерами таких переходов являются плавление и кристаллизация, испарение и конденсация, сублимация и десублимация;
  2. Фазовые переходы второго рода. В этом случае плотность и внутренняя энергия не меняются, вследствие чего визуально такой фазовый переход может не наблюдаться.

Фазовые переходы второго рода

Удельный термодинамический потенциал остается непрерывным при любых переходах, но его производные могут испытывать разрыв непрерывности. Фазовые превращения, при которых первые производные той же функции остаются непрерывными, а вторые производные меняются скачкообразно, называются фазовыми превращениями второго рода.

Фазовые переходы обнаруживают по изменению свойств и особенностям характеристик вещества в момент фазового перехода. Какая из фаз вещества устойчива при тех или иных условиях, определяется одним из термодинамических потенциалов. При заданной температуре и объеме — это свободная энергия Гельмгольца F(V, T), при заданной температуре и давлении — потенциал Гиббса G(T, р). Потенциал Гельмгольца F — это разность между внутренней энергией вещества Е и его энтропией S, умноженной на абсолютную температуру Т:

И энергия, и энтропия в (1) являются функциями внешних условий (давления p и температуры Т), а фаза, которая реализуется при определенных внешних условиях, обладает наименьшим из всех возможных фаз потенциалом Гиббса. При изменении внешних условий может оказаться, что свободная энергия другой фазы стала меньше. Изменение внешних условий всегда происходит непрерывно, и поэтому его можно описать некоторой зависимостью объема системы от температуры V=f(T)

. Учитывая это согласование в значениях Т и V, можно сказать, что смена стабильности фаз и переход вещества из одной фазы в другую происходят при определенной температуре Т0 на термодинамическом пути V=f(T)

, а значения F(T,V(T))

для обеих фаз являются функциями температуры вблизи этой точки F_t=F_i(T_0,T)

Вблизи Т0 зависимость F_j(T, V(T))

для одной и F_2(T, V(T))

для другой фазы можно приблизить полиномами, зависящими от разности температур Т—Т_0

Разность между свободными энергиями двух фаз принимает вид

Пока разность Т-Т_0

достаточно мала, можно ограничиться только первым слагаемым и утверждать, что если a_1>а_2

, то при низких температурах ( Т

) стабильна фаза I, при высоких температурах — фаза II. В самой точке перехода ( Т=Т_0

) первая производная свободной энергии по температуре испытывает скачок: при Т

. По определению, \frac

— это энтропия вещества. Следовательно, при фазовом переходе энтропия испытывает скачок, определяя теплоту перехода Q, так как Q=\frac

. Это и есть переходы первого рода.

Однако возможно, что совпадут не только свободные энергии, но и их производные по температуре, то есть a_1=a_2

. Такая температура не должна быть выделенной; действительно, при F_1(T_0)=F_2(T_0)

в первом приближении по отношению к Т-Т_0

и в этой точке фазовый переход не произойдет: тот потенциал Гиббса, который был меньше при Т

, будет меньше и при Т>Т_0

. Но иногда существуют причины для того, чтобы при Т=Т_0

одновременно выполнялись F_1(T_0)=F_2(T_0)

. Тогда фаза I становится неустойчивой относительно внутренних степеней свободы при T>T_0

, а фаза II — при Т

. В этом случае и происходят переходы второго рода. Название связано с тем, что при переходах второго рода происходит скачок только второй производной потенциала Гиббса по температуре, а вторая производная свободной энергии по температуре определяет теплоемкость вещества.

Таким образом, при переходах второго рода должен наблюдаться скачок теплоемкости вещества, но не должно происходить выделение теплоты.

В чем же причины необходимых условий перехода второго рода? Дело в том, что и при T>T_0

существует одно и то же вещество. Взаимодействия между элементами, его составляющими, не изменяются скачком, это и есть физическая природа того, что термодинамические потенциалы для обеих фаз не могут быть независимыми.

Уравнения Эренфеста

Фазовые переходы первого рода характеризуются уравнением Клапейрона-Клаузиуса (квазистатические процессы перехода вещества). Согласно уравнению, теплота фазового перехода (например, теплота плавления) определяется выражением:

Между температурой фазового перехода и внешним давлением существует функциональная связь: при фазовом переходе производная (dp / dV) т терпит разрыв. Для фазовых переходов второго рода уравнение Клапейрона- Клаузиуса не применимо, так как из условия равенства первых производных удельного термодинамического потенциала

следует равенство удельных энтропий и объемов: s_1=s_2

Это приводит к тому, что в правой части уравнения одновременно обращаются в нуль числитель и знаменатель, и в уравнении Клапейрона- Клаузиуса возникает неопределенность вида 0/0.

Найдем полные дифференциалы удельных энтропий и объемов, и в соответствии с формулами (7.1) и (7.2) приравняем их

Проведем преобразование полученных выражений. Производная удельной энтропии по температуре в обратимом процессе может быть представлена в виде

где q — удельная теплота, ср — удельная изобарическая теплоемкость.

Так как для второй производной удельного термодинамического потенциала может быть записано равенство:

Полученные выражения позволяют записать уравнения, связывающие производную давления от температуры \frac

(наклон кривой равновесия) со скачками удельной изобарической теплоемкости cp и величин \frac

, связанных с температурным коэффициентом объемного расширения и коэффициентом изотермической сжимаемости

Эти уравнения называются уравнениями Эренфеста, и они имеют вид

Модель Изинга

Главный принцип процесса фазового перехода — максимальная вероятность: в природе реализуется только наиболее вероятное состояние ансамбля частиц. Охарактеризуем состояние системы энергией E каждой возможной конфигураций частиц и числом конфигураций с этой энергией W(E). Вероятность реализации состояния ансамбля Р(Е) по формуле Гиббса равна

где k — постоянная Больцмана, Т — абсолютная температура. Свободная энергия Гиббса F пропорциональна lnP(E). Чтобы определить, какое состояние реализуется, нужно найти максимум P(E), где Е зависит от набора внутренних обобщенных координат: положений атомов, ориентации их моментов, структуры и т.д.

Модель Изинга представляет собой модель кристалла с атомами, зафиксированными в неподвижных узлах кристаллической решетки. Каждому атому приписываются несколько возможных дискретных состояний (степеней свободы). В оригинальной модели Изинга возможных состояний атома два (соответствуют магнитному моменту, который может иметь направления вверх и вниз на плоской квадратной решетке). Функция F для модели должна быть минимальна в равновесном состоянии. Найдем свободную энергию для модели Изинга как функцию температуры. Так как учитываются только двухчастичные изотропные взаимодействия ближайших соседей, средняя энергия подсистемы моментов во внешнем поле Hex может быть записана в виде

где V — энергия взаимодействия соседних атомов, a_=1

, если i и j — ближайшие соседи и a_=0

во всех остальных случаях. Полагая верным приближение \langle S_iS_j\rangle=\langle S_i\rangle\langle S_j\rangle

и факт, что упорядочение моментов будет ферромагнитным (после упорядочения все моменты будут направлены в одну сторону), определим эффективное поле, действующее на каждый атом со стороны окружающих:

где n=\langle S_i\rangle

В этих приближениях состояния всех атомов независимы, значит можно подсчитать число способов реализации конфигураций с заданной энергией. Вероятность направления момента вверх или вниз на одном атоме в принятом приближении среднего поля не влияет на его реализацию в другом атоме. Вероятность независимых событий для таких моментов равна произведению вероятностей того или иного состояния атома, а по свойствам логарифмов (логарифм произведения равен сумме логарифмов), получаем:

Произведем приближенный расчет F при вычислении внутренней энергии E=-NVr^2-Nr_jH

. При подсчете вероятности состояния с данной энергией считается, что W, как и Е, определяется средним значением момента n, W — число способов, которыми можно реализовать значение n=\frac

, N — число узлов решетки, а N1 и N2 — число моментов, направленных по и против внешнего поля: N=N_1+N_2

. Ясно, что число способов размещения N1 по N узлам:

По формуле Стирлинга при m\to\infty\ln m!=m(\ln m-1)

Учитывая взаимообратность функций логарифмирования и экспоненцирования, можно утверждать, что уравнение состояния n, приближенно определяющее F(n), эквивалентно уравнению приближенного определения поля в первом случае. Итак, уравнения (6) или (8), будучи подставлены в (5) или (7), дадут одни и те же равновесные значения F (T) для обеих фаз; для обоих методов вычисления F модели Изинга из равенства F_1(T)=F_2(T)

Теория Ландау

Из приведенных вычислений видно, что при приближенных подсчетах потенциала Гиббса для модели Изинга на промежуточных этапах возникает потенциал, минимумы которого соответствуют потенциалам Гиббса разных фаз. Эта функция — потенциал Ландау — должна существовать всегда, когда структуры фаз близки между собой. Его можно ввести в рассмотрение, если в перестройке структуры при переходе из одной фазы в другую участвует ограниченное число степеней свободы кристалла (в описанном примере модели Изинга параметром порядка является плотность ферромагнитного момента кристалла).

Теория Ландау основана на представлении о связи фазового перехода второго рода с изменением группы симметрии физической системы. Л. Д. Ландау предположил, что свободная энергия любой системы должна удовлетворять двум условиям: быть аналитической функцией и соблюдать симметрии гамильтониана. Тогда (в окрестности критической температуры T0) термодинамический потенциал Гиббса можно разложить по степеням параметра порядка:

\Phi (p,T,\eta) =\Phi _ (p,T)+\alpha (p)t\eta ^+\beta (p)\eta ^ — \eta hV

где а, в — коэффициенты разложения, п — параметр порядка, t=T-T_0

, h — напряженность поля. С учетом модели Изинга, свободная энергия может быть записана следующим образом:

F=r\eta ^ + s\eta ^ + H\eta

В этой теории Ландау впервые применил понятие параметра порядка — термодинамическую величину, характеризующую дальний порядок в среде, возникающий в результате спонтанного нарушения симметрии.

Итак, в точке перехода появляется параметр порядка, равный нулю в менее упорядоченной фазе и изменяющегося от нуля до ненулевых значений в более упорядоченной фазе. Вследствие чего изменение симметрии тела при фазовом переходе второго рода обладает следующим общим свойством: симметрия одной из фаз является более высокой по отношению к другой фазе (тогда как при фазовом переходе первого рода изменение симметрии тела не подчинено никаким ограничениям). В большинстве случаев более симметричная фаза соответствует более высоким температурам, а менее симметричная — более низким. В частности, переход второго рода из упорядоченного в неупорядоченное состояние происходит всегда при повышении температуры (исключение — точка Кюри сегнетовой соли, ниже которой кристалл относится к ромбической, а выше — к моноклинной системе).

С существованием неравновесного потенциала Ландау связаны некоторые свойства фазовых переходов второго рода. Например, при переходах второго рода не имеет место правило фаз Гиббса: в одной точке на фазовой р-Т диаграмме не может сосуществовать более трех фаз одного вещества. При выводе правила фаз существенно используется предположение о независимости их потенциалов Гиббса. При переходах второго рода потенциалы граничащих фаз не независимы. Поэтому сосуществование более трех фаз невозможно, а граничить в одной точке перехода второго рода могут и более трех фаз.

Некоторые примеры фазовых переходов второго рода

Наиболее иллюстративным примером фазового перехода второго рода является превращение жидкого Не I в жидкий Не II при температуре 2,2 К и ниже. С этим фазовым переходом связано квантовое явление сверхтекучести, возникающее в Не II. Это явление было открытое в 1938 г. П. Л. Капицей и теоретически объяснено советским физиком-теоретиком Л. Д. Ландау.

Теория сверхтекучести основывается на предложении о том, что Не II представляет собой смесь двух жидкостей, хотя с точки зрения квантовой физики атомы Не II нельзя разделить на два различных вида. Однако классическая аналогия наиболее удобна для восприятия и согласно ей одна компонента Не II является сверхтекучей, а другая — нормальной (не сверхтекучей). Таким образом течение Не II можно представить в виде потоков двух жидкостей, при этом вязкость сверхтекучей компоненты равна нулю.

Образование ползущей пленки в сосудах с Не II

Рисунок 1. Образование ползущей пленки в сосудах с Не II

Именно в отсутствии вязкости у Не II и состоит явление сверхтекучести. Отсутствие вязкости приводит к тому, что Не II может проникать через очень узкие капилляры (П.Л. Капица ставил опыты по протеканию Не II между двумя шлифованными стеклами), а также к тому, что уровни Не II, налитого в два разделенных перегородкой сосуда, постепенно выравниваются из-за образования ползущей пленки (см. рис. 1).

Ползущая пленка имеет толщину менее 10" м. При ее движении со скоростью несколько десятков сантиметров в секунду жидкость перетекает из одного сосуда в другой.

Нормальная компонента переносит при своем движении теплоту, а сверхтекучая компонента — нет. При протекании Не II через узкую щель, перетекает главным образом сверхтекучая часть Не II. Поэтому вытекающий Не II должен иметь более низкую температуру, чем Не II в сосуде из которого происходит вытекание. Это явление было использовано для получения сверхнизких температур, составляющих десятые доли кельвина.

К фазовым переходам второго рода относятся также переход некоторых веществ в сверхпроводящее состояние при низких температурах. Такой переход сопровождается падением до нуля электрического сопротивления сверхпроводников. Примером фазового перехода второго рода является переход железа из ферромагнитного в парамагнитное состояние в точке Кюри. К ним относятся также переходы, связанные с изменением симметрии кристаллической решетки, в тех случаях, когда тип симметрии решетки при переходе становится другим (например, переход от кубической к тетрагональной решетке).

При фазовом переходе второго рода все свойства вещества изменяются непрерывным образом во всем объеме вещества. Поэтому при их протекании невозможно существование метастабильных состояний, характерных для фазовых переходов первого рода.

Заключение

Представление о переходах второго рода имеет обширное практическое значение: во многих случаях оно оказывается продуктивным при предсказании свойств одних фаз вещества по характеристикам других его фаз.

В начале работы было замечено, что существует два вида фазовых переходов. Но стоит упомянуть, что современная физика исследует также системы, обладающие фазовыми переходами третьего или более высокого рода. В последнее время, например, широкое распространение получило понятие квантовый фазовый переход, т.е. фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

  1. Галкин А.Р.
  2. Рыбанов А.А.
  3. Абрамова О.Ф.

Список литературы

  1. Гуфан Ю. М.. Термодинамическая теория фазовых переходов. Ростов н/Д: Издательство Ростовского университета, 1982.
  2. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. М.: Физматлит, 2002. Т.5. Статистическая физика. Часть 1. 5-е издание.
  3. Паташинский А. З., Покровский В. Л. Флуктуационная теория фазовых переходов, М.: Наука, 1981.
  4. Сивухин Д. В. Общий курс физики. Т. II. Термодинамика и молекулярная физика. М.: Физматлит, 2002.

Цитировать

Мы рассмотрели переходы из жидкого и газообразного состояния в твердое, т. е. кристаллизацию, и обратные переходы — плавление и возгонку. Ранее в гл. VII мы познакомились с переходом жидкости в пар — испарением и обратным переходом — конденсацией. При всех этих фазовых переходах (превращениях) тело либо выделяет, либо поглощает энергию в виде скрытой теплоты соответствующего перехода (теплота плавления, теплота испарения и т. д.).

Фазовые переходы, сопровождающиеся скачкообразным изменением энергии или других величин, связанных с энергией, например плотности, называются фазовыми переходами первого рода.

Для фазовых переходов первого рода характерно скачкообразное, т. е. происходящее в очень узком температурном интервале, изменение свойств веществ. Можно, следовательно, говорить об определенной температуре перехода или точке перехода: точка кипения, точка плавления и

Температуры фазовых переходов зависят от внешнего параметра — давления при данной температуре равновесие фаз, между которыми происходит переход, устанавливается при вполне определенном давлении. Линия фазового равновесия описывается известным нам уравнением Клапейрона — Клаузиуса:

где молярная теплота перехода, и молярные объемы обеих фаз.

При фазовых переходах первого рода новая фаза не возникает сразу во всем объеме. Сначала образуются зародыши новой фазы, которые затем растут, распространяясь на весь объем.

С процессом образования зародышей мы встречались при рассмотрении процесса конденсации жидкости. Для конденсации необходимо существование центров (зародышей) конденсаций в виде пылинок, ионов и т. п. Точно так же для отвердевания жидкости необходимы центры кристаллизации. В отсутствие таких центров пар или жидкость могут находиться в переохлажденном состоянии. Можно, например, длительное время наблюдать чистую воду при температуре

Встречаются, однако, фазовые переходы, при которых превращение происходит сразу во всем объеме в результате непрерывного изменения кристаллической решетки, т. е. взаимного расположения частиц в решетке. Это может привести к тому, что при определенной температуре изменится симметрия решетки, например, решетка с низкой симметрией перейдет в решетку с более высокой симметрией. Эта температура и будет точкой фазового перехода, который в этом случае называется фазовым переходом второго рода. Температура, при которой происходит фазовый переход второго рода, называется точкой Кюри, по имени Пьера Кюри, который обнаружил фазовый переход второго рода в ферромагнетиках.

При таком непрерывном изменении состояния в точке перехода не будет равновесия двух разных фаз, поскольку переход произошел сразу во всем объеме. Поэтому в точке перехода нет и скачка внутренней энергии II. Следовательно, такой переход не сопровождается выделением или поглощением скрытой теплоты перехода. Но так как при температурах выше и ниже точки перехода вещество находится в различных кристаллических модификациях, то у них различна теплоемкость. Это значит, что в точке фазового перехода скачком меняется теплоемкость, т. е. производная от внутренней энергии по температуре

Скачком изменяется и коэффициент объемного расширения хотя сам объем в точке перехода не изменяется.

Известны фазовые переходы второго рода, при которых непрерывное изменение состояния не означает изменения кристаллической структуры, но при которых состояние также изменяется сразу во всем объеме. Наиболее известные переходы этого типа — это переход вещества из ферромагнитного состояния в неферромагнитное, который происходит при температуре, называемой точкой Кюри; переход некоторых металлов из нормального в сверхпроводящее состояние, при котором исчезает электрическое сопротивление. В обоих случаях в точке перехода не происходят изменения структуры кристалла, но в обоих случаях состояние изменяется непрерывно и сразу во всем объеме. Переходом второго рода является и переход жидкого гелия из состояния Не I в состояние Не II. Во всех этих случаях в точке перехода наблюдается скачок теплоемкости. (В связи с этим температура фазового перехода второго рода имеет второе наименование: она называется -точкой, по характеру кривой изменения теплоемкости в этой точке; об этом уже говорилось в § 118, в тексте о жидком гелии.)

Разберем теперь немного подробнее, как происходят фазовые переходы. Основную роль в фазовых превращениях играют флуктуации физических величин. Мы уже встречались с ними при обсуждении вопроса о причине броуновского движения твердых частиц, взвешенных в жидкости (§ .7).

Флуктуации — случайные изменения энергии, плотности и других связанных с ними величин — существуют всегда. Но вдали от точки фазового перехода они возникают в очень малых объемах и тут же снова рассасываются. Когда же температура и давление в веществе близки к критическим, то в объеме, охваченном флуктуацией, становится возможным появление новой фазы. Все различие между фазовыми переходами первого и второго рода заключается в том, что флуктуации вблизи точки перехода развиваются по-разному.

Выше уже говорилось, что при переходе первого рода новая фаза возникает в виде зародышей внутри старой фазы. Причина их появления — это случайные флуктуации энергии и плотности. По мере приближения к точке перехода флуктуации, приводящие к новой фазе, происходят все чаще и чаще, и хотя каждая флуктуация охватывает очень малый объем, все вместе они могут привести к появлению макроскопического зародыша новой фазы, если в месте их образования имеется центр конденсации.

т. е. происходят во всем объеме. Ниже точки перехода, когда новая фаза уже установилась, они снова начинают здтухать и постепенно опять становятся короткодействующими и кратковременными.

Фазовый переход второго рода всегда связан с изменением симметрии системы, в новой фазе либо возникает порядок, которого не было в первоначальной (например, упорядочиваются магнитные моменты отдельных частиц при переходе в ферромагнитное состояние), либо изменяется уже существовавший порядок (при переходах с изменением кристаллической структуры).

Этот новый порядок содержится и во флуктуациях вблизи точки фазового перехода.

Фазовые переходы второго рода — очень сложное и интересное явление. Процессы, происходящие в непосредственной окрестности точки перехода, еще до конца не исследованы, и полная картина поведения физических величин в условиях бесконечных флуктуаций еще только создается.

Читайте также: