Определить лямбда так чтобы один из корней многочлена равнялся удвоенному другому

Обновлено: 05.07.2024

Многочлен Pn (x) = a n x n + a n – 1 x n – 1 + a n – 2 x n – 2 + . + a 1 x + a 0 , где a≠0, aₖ, k=0,1,2,3. aₖ,k=0,1,2,3. n - числа, x - переменная, называется многочленом n -ной степени .
Традиционно aₙ называется старшим коэффициентом, a₀ - свободным членом многочлена.

Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.

Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).

Следствие. Если число а является корнем многочлена Р(х), то многочлен

Рₙ(х)= a₀ x n + a 1 x n – 1 + . + a n – 1 x + a n делится без остатка на двучлен х-а.

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида P(x1, x2, …, xn)=0,

где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством F.

Степенью алгебраического уравнения называют степень многочлена P.

Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Общая теория многочленов многих переменных далеко выходит за рамки школьного курса.

Мы рассмотрим многочлены одной действительной переменной, да и то в простейших случаях. Рассмотрим многочлены одной переменной, приведённые к стандартному виду.

Многочлен ax + b, где a≠0, a, b - числа, x - переменная, называется многочленом первой степени.
Многочлен ax²+bx+c, где a≠0, a, b, c - числа, x - переменная, называется многочленом второй степени (квадратным трёхчленом, квадратичной функцией).
Многочлен ax³+bx²+cx+d, где a≠0, a, b, c, d - числа, x - переменная, называется многочленом третьей степени.

Вообще, многочлен Pn (x) = a n x n + a n – 1 x n – 1 + a n – 2 x n – 2 + . + a 1 x + a 0, где a≠0, aₖ, k=0,1,2,3. aₖ,k=0,1,2,3. n - числа, x - переменная, называется многочленом n -ной степени.
Традиционно aₙ называется старшим коэффициентом, а a₀ - свободным членом многочлена.

Стоит отметить, что каждый многочлен степени больше 2 можно разложить на множители.

Корнем многочлена Р(х) называют такое значение х, при котором многочлен обращается в нуль.

Алгебраическое уравнение (полиномиальное уравнение) — уравнение вида

где P — многочлен от переменных x1, x2, …, xn, которые называются неизвестными.

Коэффициенты многочлена P обычно берутся из некоторого множества F, и тогда уравнение P(x1, x2, …, xn)=0 называется алгебраическим уравнением над множеством F.

Степенью алгебраического уравнения называют степень многочлена P.


является алгебраическим уравнением четвертой степени от трёх переменных (с тремя неизвестными) над множеством вещественных чисел.

Значения переменных x1, x2, …, xn, которые при подстановке в алгебраическое уравнение обращают его в тождество, называются корнями этого алгебраического уравнения.

Теорема Безу, невзирая на кажущуюся простоту и очевидность, является одной из базовых теорем теории многочленов. В данной теореме алгебраические характеристики многочленов (они позволяют работать с многочленами как с целыми числами) связываются с их функциональными характеристиками (которые позволяют рассматривать многочлены как функции).

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-а равен Р(а).

Доказательство. Разделим Р(х) c остатком на (x - а).

Получим Р(х)= (x - а)·Q(х) + R; по определению остатка, многочлен r либо равен 0, либо имеет степень, меньшую степени (x - a), т.е. меньшую 1. Но степень многочлена меньше 1 только в случае, когда она равна 0, и поэтому в обоих случаях R на самом деле является числом – нулем или отличным от нуля.

Подставив теперь в равенство Р(х)= (x - а)·Q(х) + R значение x = a, мы получим Р(a)= (a - а)Q(х) + R, P(a) = R, так что действительно R = P(a).

Эту закономерность отметил и математик Безу.

Следствие. Если число а является корнем многочлена Р(х), то многочлен

Рₙ(х)= a₀ x n + a 1 x n – 1 + . + a n – 1 x + a n делится без остатка на двучлен х-а.

Историческая справка

Этьенн Безу - французский математик, член Парижской Академии Наук (с 1758 года), родился в Немуре 31 марта 1730 года и умер 27 сентября 1783 года. С 1763 года Безу преподавал математику в училище гардемаринов, а с 1768 года и в королевском артиллерийском корпусе.

Основные работы Этьенна Безу относятся к высшей алгебре, они посвящены созданию теории решения алгебраических уравнений.

В теории решения систем линейных уравнений он содействовал возникновению теории определителей, развивал теорию исключения неизвестных из систем уравнений высших степеней, доказал теорему (впервые сформулированную Маклореном) о том, что две кривые порядка m и n пересекаются не более чем в mn точках.

Во Франции и за её границей вплоть до 1848 года был очень популярен его шеститомный "Курс математики", написанный им в 1764-69 годах.

Безу развил метод неопределённых множителей. В элементарной алгебре его именем назван способ решения систем уравнений, основанный на этом методе.

Часть трудов Безу посвящена внешней баллистике.

Именем ученого названа одна из основных теорем алгебры.

Примеры алгебраических уравнений

Примеры и разбор решения заданий тренировочного модуля


Разложим на множители многочлен:

Ответ: ))

Решить уравнение: х 4 - x 3 - 6x 2 - x + 3 = 0.

Решение: Целые корни многочлена Р(х) = х 4 - x 3 - 6x 2 - x + 3 должны быть делителями свободного члена, так что это могут быть числа -1, 1, 3, -3.

Дан такой пример x^5+ax^3+b Надо найти двойной корень, отличный от нуля.

Вообще-то ищут НОД многочлена и его производной. Ваш путь решения просто не понятен логически. Вас так учили решать? Тогда напишите подробнее. И пишите формулами а не словами.

Alidoro, Ваш путь решения просто не понятен логически. - Вроде понятен. ТС в явном виде проверяет, что некоторое число является корнем производной и самого многочлена.

CostaRicaMOHAX, осталось только b - предполагайте поочерёдно, что кратным корнем является один из корней производной. и находите `b` явной подстановкой.
но в общем я не могу найти b - `b = -x^5 - a*x^3. видимо забыли после подстановки приравнять к нулю.

находите `b` явной подстановкой.
получается b= - (-3a/5)^5/2-a*(-3a/)^3/2 это при положительном корне, упростить ума не хватает, 3 месяца не занимался алгеброй

All_ex, Да, что-то я запутался в условии задачи. В заголовке темы спрашивается одно, в самой теме жирным шрифтом вопрос уже другой, к тому же формула записана словами.

CostaRicaMOHAX, 3 месяца не занимался алгеброй - это не срок.
упростить ума не хватает - вынесите `x` за скобки. тогда при подстановке в скобках получится весьма простое выражение.

CostaRicaMOHAX, отличный от нуля. - На самом деле, если требование кратности 2 строгое, то нуль и так отбрасывается, так как будет иметь более высокую кратность.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Подготовка к ГИА и ЕГЭ

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена , и как разделить многочлен на двучлен.

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Подготовка к ГИА и ЕГЭ

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Подготовка к ГИА и ЕГЭ

, где - корни многочлена .

Если многочлен не является приведенным, то его можно сделать таковым, разделив на старший коэффициент.

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни приведенного многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен .

Для этого многочлена произведение корней равно

Делители числа : ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

, следовательно, число -1 также не является корнем многочлена.

Подготовка к ГИА и ЕГЭ

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:

Разложение многочлена на множители. Теорема Безу и схема Горнера

Есть и другой способ деления многочлена на двучлен - схема Горнера.

Разложение многочлена на множители. Теорема Безу и схема Горнера

Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

Подготовка к ГИА и ЕГЭ

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Подготовка к ГИА и ЕГЭ

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.


Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.


В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

aa

Будем делить дальше. Нам нужно найти корни многочлена . Корни также ищем среди делителей свободного члена, то есть теперь уже числа -24.

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Разложение многочлена на множители. Теорема Безу и схема Горнера

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

aa

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Подготовка к ГИА и ЕГЭ

Итак, корни исходного уравнения :

Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе "Помогите решить/разобраться (М)".

Не ищите на этом форуме халяву , правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения и указать конкретные затруднения.

Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.

Задачка про корни многочлена

$x^5+10ax^3+5bx+c$

При каких условиях многочлен имеет тройной корень, отличный от нуля.

Была идея найти экстремумы и сравнить их "высоту". Точки экстремума легко находятся (там получается биквадратное уравнение): >$" />
( независимы). Но если это посдтавить в исходный многочлен, ничего там не сокращается и выглядит плохо. Может я вообще не той дорогой иду?

В тройном корне вторая производная равна нулю. Это сильно ограничивает возможности. Осталось добавить равность нулю первой производной и самой функции.

$f(x) = (x-a)^3g(x)$

Это еще проще следует из определения кратного корня: тупо дифференцируем

Да, ясно, я туплю.

У меня получилось условие . А для как найти?

Да, ясно, я туплю.

У меня получилось условие . А для как найти?

Получилось , $" />

$x=0$


Случай мы исключаем. А что ещё там остаётся?

Получилось , $" />

$x=0$


Случай мы исключаем. А что ещё там остаётся?

$a$

Не заметил. Тогда всё.
Не забудьте условие на .

$a$

Не забудьте условие на .



?

Была идея найти экстремумы и сравнить их "высоту". Точки экстремума легко находятся (там получается биквадратное уравнение): >$" />
( независимы). Но если это посдтавить в исходный многочлен, ничего там не сокращается и выглядит плохо.

Разумная идея. Собственно, отсюда уже всё видно. Экстремумов (точнее, стационарных точек) может быть 0, 1, 2 или 4. Легко понять (хотя не так быстро объяснить формально), что тройной корень не в нуле возможен (и будет) лишь тогда, когда попарно сливаются стационарные точки слева и справа, т.е. когда равен нулю внутренний корень. Это даёт Ваши условия , и значение самого корня: $" />
или $" />
; подстановка каждого из них в уравнение даёт два варианта выражения через .

$\begin</p>
<p>Ну или, да, просто формально найти общее решение системы уравнений:<br />x^5+10ax^3+5bx+c=0\\5x^4+30ax^2+5b=0\\20x^3+60ax=0\end$

(решение будет, разумеется, однопараметрическим).

Да, и для приличия: надо всё-таки формально доказать (это легко), что во всех найденных случаях корень не окажется четырёх кратным.

надо всё-таки формально доказать (это легко), что во всех найденных случаях корень не окажется четырёхкратным.

Читайте также: