С какой целью в автомобилях стали использовать каталитический дожигатель выхлопных газов

Обновлено: 01.07.2024

В системе выпуска всех современных автомобилей есть устройство для снижения токсичности отработавших газов - каталитический нейтрализатор. Рассмотрим его конструкцию и возможные неисправности.

Каталитические нейтрализаторы начали применять еще в прошлом веке для снижения токсичности отработавших газов автомобильного двигателя с искровым зажиганием.

Керамические соты каталитического нейтрализатора

Внутри нейтрализатора расположен пористый несущий материал — керамический блок с сотовой структурой. На поверхность керамического блока нанесен промежуточный слой активаторов, а поверх него — каталитически активный слой из благородных металлов (платины, палладия и родия). На каталитически активном слое происходят химические реакции, при которых ядовитые вещества отработавших газов: оксид углерода и оксиды азота — превращаются в диоксид углерода и элементарный азот, а углеводороды — в диоксид углерода и водяной пар. Степень очистки отработавших газов в исправном нейтрализаторе достигает 98%.

Каталитический нейтрализатор работает без расхода активного вещества. В современных автомобилях с нормами токсичности Евро-4 и Евро-5 каталитические нейтрализаторы располагают максимально близко к выпускным отверстиям и крепят шпильками или болтами через прокладку к головке блока цилиндров.

Каталитический нейтрализатор (катколлектор)

Столь тесное соседство массивного и горячего каталитического нейтрализатора с двигателем затрудняет компоновку моторного отсека и приводит к повышению температуры в подкапотном пространстве. Но зато прогрев активной зоны катколлектора после пуска двигателя происходит быстрее. Ведь только прогретый катализатор способен эффективно очищать отработавшие газы. Каталитические реакции эффективно идут только при температуре свыше 300 градусов Цельсия.

Каталитический нейтрализатор автомобиля Лада Приора

Для правильной работы системы перед каталитическим блоком и сразу за ним устанавливают кислородные датчики (лямбда-зонды). Стоящий до нейтрализатора датчик называют управляющим, а установленный после — диагностическим.

В мировой практике используется и другое расположение каталитического нейтрализатора. Такая схема с расположением бочонка каталитического нейтрализатора под днищем автомобиля появилась на заре применения этого способа снижения токсичности отработавших газов и до сих пор используется, например, на автомобилях фирмы Renault при нормах Евро-4 и даже Евро-5.

Каталитический нейтрализатор

Система выпуска отработавших газов Lada 4x4

Система выпуска отработавших газов Лады 4x4, каталитический нейтрализатор расположен вдалеке от двигателя.

Система выпуска отработавших газов Лады 4x4, каталитический нейтрализатор расположен вдалеке от двигателя.

Каталитический нейтрализатор считается надежным элементом конструкции современного автомобиля, и производители не предусматривают регламента по его замене. То есть, по их мнению, срок службы катколлектора или элемента под днищем автомобиля должен быть равен сроку службы всего автомобиля. Тем не менее практика показала, что каталитические нейтрализаторы далеко не всегда служат безупречно.

Что может случиться с ней трализатором?

Первой неисправностью активного элемента катколлектора является его оплавление, проявляющееся в виде спекания сот и приводящее к затрудненному проходу отработавших газов. Обычно это происходит после того, как превышен порог температуры газов в 900 градусов.

Каталитический нейтрализатор

Оплавление керамического блока захватывает пока не всю площадь. Но процесс происходит лавинообразно. Часть сот забита, остальные перегреваются и оплавляются дальше.

Оплавление керамического блока захватывает пока не всю площадь. Но процесс происходит лавинообразно. Часть сот забита, остальные перегреваются и оплавляются дальше.

Второй возможный сценарий повреждения катколлектора — это разрушение керамики. Иными словами, она начинает крошиться.

Каталитический нейтрализатор

Каталитический нейтрализатор

Ряд производителей используют вместо керамической основы металлическую пористую структуру. В народе такое решение считают более прочным.

Каталитический нейтрализатор

Гораздо коварнее дефект, при котором частицы керамики начинают выкрашиваться с поверхности сот. Причиной разрушения керамики чаще всего является некачественное топливо, которое догорает на такте выпуска. Причем крошение начинается в самой горячей зоне, на кромках сот, расположенных ближе к двигателю.

При работе двигателя на разных режимах может происходить заброс части отработавших газов обратно в цилиндры двигателя. Керамическая пыль, являющаяся абразивом и попавшая с потоком газов в цилиндр, быстро выведет из строя поршневую группу и приведет к задирам на стенках цилиндров.

Как дела с гарантией?

По мнению автора, гарантия на каталитический нейтрализатор должна быть продолжительностью не меньше, чем на автомобиль.

Теперь поподробнее рассмотрим, что следует и чего не следует делать владельцу автомобиля, чтобы нейтрализатор прослужил долго и счастливо.

Причины выхода из строя каталитического нейтрализатора:

  1. Плохое качество топлива — чаще всего с низким октановым числом. Система управления двигателем переходит на позднее зажигание. Это вызывает догорание смеси на выпуске и рост температуры отработавших газов.
  2. Неправильная работа системы зажигания (пропуски зажигания). Не сгоревшее в одном цилиндре топливо тут же поджигается и горит в нейтрализаторе.
  3. Механическое повреждение каталитического нейтрализатора. Повышенная вибрация силового агрегата и удары по катализатору приводят к крошению керамического блока.
  4. Термоудары. Мгновенное охлаждение раскаленного нейтрализатора при преодолении лужи, к примеру, может вызвать трещины керамического элемента.
  5. Неправильный состав топливовоздушной смеси, вызванный, например, неисправностью датчика кислорода. Тот же эффект вызовут негерметичные, льющие форсунки.
  6. Добавление присадок в бензин. Коктейли от непроверенных производителей или нарушение концентрации могут повышать температуру сгорания на выпуске.
  7. Самые новые конструкции двигателей с минимальной токсичностью запрограммированы на быстрый прогрев нейтрализатора. В условиях холодов для ускорения прогрева вначале блоки управления двигателем очень переобогащают смесь, которая догорает на поверхности нейтрализатора.
  8. В истории существовали откровенные дефекты конструкции нейтрализатора. Например, Suzuki проводила отзывную кампанию по сплошной замене нейтрализаторов на автомобилях SX4.

Из личного опыта

Вторая половина девяностых. Я работал менеджером по автопарку в коммерческой фирме. Шеф вызывает и говорит: Карину (Toyota Carina Е) продавать будем. Езжай на мойку, и чтоб двигатель блестел, как…

Toyota Carina Е

Ну я и поехал. Команду шефа о качестве мойки передал. А мотор, хоть и впрысковый, но имел одну катушку зажигания и высоковольтный распределитель. На выезде начались перебои в работе двигателя. До офиса всего-то метров 300. Недотянул. Автомобиль глохнет, и под днищем как будто реактивный двигатель начинает работать. Гудит, машина трясется. Я выскочил, отбежал, а из выхлопной трубы струя черной гари летит вперемешку с искрами.

В общем, погорело и перестало. Вернулся к машине, открыл капот, вскрыл крышку распределителя, а там болото. Влагу вытер, просушил и добрался-таки до офиса. А теперь ответьте на вопрос: где, по-вашему, горело топливо?

А если все-таки конец?

Вышедший из строя каталитический нейтрализатор на негарантийной машине заменять оригинальным сможет и захочет далеко не каждый. Дорого это. Какие варианты развития событий?

Каталитический нейтрализатор (конвертер) представляет собой устройство контроля выбросов выхлопных газов, которое превращает токсичные газы и загрязняющие вещества в выхлопных газах двигателя внутреннего сгорания в менее токсичные загрязняющие вещества, катализируя окислительно-восстановительную реакцию (реакцию окисления и восстановления).

каталитический нейтрализатор

Катализаторы обычно используются с двигателями внутреннего сгорания, работающими на бензине или дизельном топливе.

Принцип работы

В химии катализатор — это вещество, ускоряющее или вызывающее химическую реакцию, но само при этом не расходующееся. Такими веществами являются золото, никель, палладий, медь, родий, хром и большинство драгоценных и редких металлов.

В процессе работы автомобильного двигателя образуются выхлопные газы. Эти газы попадают в выпускной коллектор и далее — в каталитический преобразователь.

схема работы катализатора автомобильного

Выхлопной газ, состоящий из токсичных веществ, проходит через структуру нейтрализатора. Вещества-катализаторы в составе конвертера вызывают химические реакции, преобразующие вредные вещества в безвредные.

Современный нейтрализатор использует два катализатора, а именно — катализатор восстановления и катализатор окисления.

Катализатор окисления изготовлен из палладия и платины, а катализатор восстановления — из родия и платины. В результате реакций в каталитическом преобразователе образуются: углекислый газ, азот, вода .

Конструкция

Каталитический преобразователь представляет собой металлический корпус из нержавеющей стали, в котором есть сердцевина с сотовой структурой. Она покрыта драгоценными металлами, такими как платина и родий. Эти металлы реагируют с выхлопными газами двигателя. Они уменьшают содержание токсичных газов, превращая их в углекислый газ и воду.

Каталитический нейтрализатор

Керамическая конструкция дешевле в производстве, но у неё есть большой минус — хрупкость. Достаточно небольшого удара, чтобы керамические соты треснули и осыпались.

В первую очередь катализатор реагирует с окисью углерода, образующейся при сгорании бензина. Он также реагирует с углеводородами, образованными несгоревшим топливом и оксидами азота. Таким образом, нейтрализатор превращает эти газы в менее вредные побочные продукты, такие как диоксид углерода, водяной пар и азот.

конструкция катализатора

Чтобы катализатор был эффективным, его температура должна быть около 400 °C. Вот почему они обычно соединены с выпускным коллектором. По этой же причине датчики кислорода имеют нагревательные элементы.

Типы каталитических нейтрализаторов

Есть три разных типа автомобильных катализаторов. Первый тип — катализатор окисления. Он уменьшает вредные загрязнения, такие как угарный газ (CO) и углеводороды топлива (HC) в выхлопе. Одновременно часто используется вторичный впрыск воздуха. Однако катализатор окисления уменьшает только часть загрязняющих веществ.

Двухступенчатый

Второй тип — двуступенчатый каталитический нейтрализатор, который является более совершенным. Работает в два этапа. Есть два элемента, которые расположены один за другим.

схема катализатора

  1. Окисление оксида углерода до диоксида углерода:
    2CO + O2 → 2CO2 .
  2. Окисление углеводородов (несгоревшего и частично сгоревшего топлива) до диоксида углерода и воды:
    CxH2x + 2 + [(3x + 1) ⁄ 2] O2 → xCO2 + (x + 1) H2O (реакция горения).

Этот тип автомобильных катализаторов широко используется в дизельных двигателях для снижения выбросов углеводородов и окиси углерода. Они также использовались на бензиновых двигателях в автомобилях американского и канадского рынков до 1981 года. Из-за неспособности контролировать оксиды азота они были заменены трехступенчатыми нейтрализаторами.

Трёхступенчатый

Третий тип — это трёхступенчатый каталитический нейтрализатор. Начал использоваться с 1981 г. Он преобразовывает вредные газы, выходящие из двигателя, в безвредные.

3 ступенчатый катализатор 2

Выхлопные газы двигателя содержат опасные вещества, которые наносят вред окружающей среде. К ним относятся оксиды азота, углеводороды и оксид углерода. Трехступенчатый катализатор превращает их в менее вредный диоксид углерода, воду и азот.

Три ступени очистки выхлопных газов выглядят так:

  1. Восстановление оксидов азота до азота (N2):
    2 CO + 2 NO → 2 CO2 + N2
    углеводород + NO → CO2 + H2O + N2
    2 H2 + 2 NO → 2 H2O + N2;
  2. Окисление угарного газа до углекислого газа:
    2 CO + O2 → 2 CO2;
  3. Окисление несгоревших углеводородов (HC) до диоксида углерода и воды в дополнение к вышеуказанной реакции NO:
    углеводород + O2 → H2O + CO2;

Эти три реакции происходят наиболее эффективно, когда катализатор получает выхлоп от двигателя, работающего немного выше стехиометрической точки. Для сжигания бензина это соотношение составляет от 14,6 до 14,8 частей воздуха на одну часть топлива. Эффективность преобразования очень быстро падает, когда двигатель работает вне этих пределов.

При бедной смеси выхлоп содержит избыточный кислород и это не способствует реакции восстановления NOx. При богатой смеси избыточное топливо потребляет весь доступный кислород перед нейтрализатором, оставляя для функции окисления только кислород, находящейся в катализаторе.

Трёхступенчатый конвертер является единственным устройством, которое уменьшает количество всех трёх загрязнителей за один раз. Такой способ очистки наиболее экономичный.

Большинство автопроизводителей используют в своих транспортных средствах именно трехступенчатые нейтрализаторы, которые соответствуют строгим нормам выбросов.

Где и как расположен катализатор

В большинстве транспортных средств каталитический нейтрализатор расположен рядом с выпускным коллектором двигателя. Преобразователь быстро нагревается благодаря воздействию очень горячих выхлопных газов, что позволяет снизить вредные выбросы во время прогрева двигателя. Это достигается путем сжигания избыточных углеводородов, которые образуются в результате обогащенной смеси, необходимой для холодного пуска.

Схема расположения каталитического нейтрализатора

В некоторых трехкомпонентных катализаторах есть системы впрыска воздуха, который подается между первой (восстановление NOх) и второй (окисление углеводородов и СО) ступенью преобразователя.

Как и в двухступенчатых преобразователях, этот нагнетаемый воздух обеспечивает кислород для реакций окисления. Также иногда присутствует точка впрыска воздуха выше по потоку, перед каталитическим нейтрализатором, чтобы обеспечить дополнительный кислород только во время прогрева двигателя.

Это приводит к тому, что несгоревшее топливо воспламеняется в выхлопном тракте, тем самым предотвращая его попадание в каталитический конвертер. Этот метод сокращает время работы двигателя, необходимое для достижения рабочей температуры катализатора.

Большинство новых автомобилей имеют электронные системы впрыска топлива и не требуют впрыска воздуха в своих выхлопных трубах. Вместо этого они обеспечивают точно контролируемую топливовоздушную смесь, которая быстро и непрерывно переключается между обеднённым и обогащённым состоянием.

Датчики кислорода контролируют содержание кислорода в отработавших газах до и после каталитического нейтрализатора, и блок управления двигателем использует эту информацию для регулировки впрыска топлива.

Смотрите также видео о том, как устроен автомобильный катализатор:

Катализатор дизельного двигателя

Для двигателей с воспламенением от сжатия (то есть для дизельных двигателей) наиболее часто используемым каталитическим нейтрализатором является катализатор окисления дизельного топлива (diesel oxidation catalyst — DOC).

DOC содержат палладий, платину и оксид алюминия, которые окисляют углеводороды и оксид углерода кислородом с образованием углекислого газа и воды.

Эти преобразователи часто работают с 90-процентной эффективностью, фактически устраняя запах дизельного топлива и помогая уменьшить видимые частицы (сажу).

Эти конверторы не уменьшают NOx, потому что любой присутствующий восстановитель будет реагировать в первую очередь с высокой концентрацией O2 в выхлопных газах дизельного топлива.

Раньше сокращение выбросов NOx от дизельных двигателей решалось путем добавления выхлопных газов во впускной коллектор, известное как рециркуляция выхлопных газов (EGR).

В 2010 году большинство производителей дизелей добавили каталитические системы в свои автомобили, чтобы соответствовать новым требованиям по выбросам.

Дизельный выхлоп содержит высокий уровень твердых частиц (ТЧ). Каталитические нейтрализаторы не удаляют ТЧ, поэтому они очищаются сажевым фильтром (diesel particulate filter — DPF).

Все транспортные средства, работающие на дизельном топливе и изготовленные после 1 января 2007 года, должны соответствовать ограничениям на выбросы дизельных частиц, что означает, что они должны быть оснащены двухсторонним каталитическим преобразователем и иметь сажевый фильтр.

Как работает автомобильный каталитический нейтрализатор?

Во время работы двигателя внутреннего сгорания в атмосферу выбрасываются отработанные газы, которые не только являются одной из основных причин загрязнения воздуха, но и одной из причин многих заболеваний.

Эти газы, которые выходят из выхлопных систем транспортных средств, состоят из чрезвычайно вредных элементов, поэтому современные автомобили оснащаются особенной системой выхлопа, в которой обязательно присутствует катализатор.

Каталитический нейтрализатор разрушает вредные молекулы выхлопных газов и делает их максимально безопасными для людей и окружающей среды.

Что такое катализатор?

Каталитический нейтрализатор представляет собой тип устройства, основной задачей которого является снижение вредных выбросов от выхлопных газов автомобильных двигателей. Устройство катализатора простое. Это металлическая емкость, которая установлена в выхлопной системе автомобиля.

Как работает автомобильный каталитический нейтрализатор?

Когда выхлопные газы двигателя попадают в катализатор, в нем происходят химические реакции. Они разрушают вредные газы и превращают их в безопасные, которые можно выбрасывать в окружающую среду.

Из каких элементов состоит каталитический нейтрализатор?

Чтобы было немного понятнее, как работает автомобильный каталитический нейтрализатор, рассмотрим, каковы его основные элементы. Не вдаваясь в подробности, перечислим только основные элементы, из которых он построен.

Подложка

Подложка представляет собой внутреннюю структуру катализатора, на которую наносятся покрытие катализатора и драгоценные металлы. Существует несколько типов подложек. Их основное отличие — материал, из которого изготавливается. Чаще всего это инертное вещество, которое стабилизирует на его поверхности активные частицы.

Покрытие

Активный материал катализатора обычно состоит из диоксида алюминия и таких соединений, как церий, цирконий, никель, барий, лантан и другие. Цель покрытия — расширить физическую поверхность подложки и служить в качестве основы, на которую наносятся драгоценные металлы.

Как работает автомобильный каталитический нейтрализатор?

Драгоценные металлы

Драгоценные металлы, присутствующие в каталитическом нейтрализаторе, служат для проведения чрезвычайно важной каталитической реакции. Обычно используемые драгоценные металлы — это платина, палладий и родий, но в последние годы большое количество производителей начали использовать золото.

Корпус

Корпус представляет собой внешнюю оболочку устройства и содержит подложку и другие элементы катализатора. Материал, из которого обычно делают корпус — нержавеющая сталь.

Трубы

Трубы соединяют каталитический нейтрализатор автомобиля с выхлопной системой автомобиля и двигателем. Они сделаны из нержавеющей стали.

Как работает автомобильный каталитический нейтрализатор?

Для работы двигателя внутреннего сгорания важно, чтобы в его цилиндрах происходил стабильный процесс сгорания воздушно-топливной смеси. Во время этого процесса образуются вредные газы, такие как оксид углерода, оксиды азота, углеводороды и другие.

Если в автомобиле нет каталитического нейтрализатора, все эти чрезвычайно вредные газы после выброса в выпускной коллектор из двигателя будут проходить через выхлопную систему и будут попадать непосредственно в воздух, которым мы дышим.

Как работает автомобильный каталитический нейтрализатор?

Если транспортное средство имеет каталитический нейтрализатор, выхлопные газы будут проходить от двигателя к глушителю через соты подложки и вступать в реакцию с драгоценными металлами. В результате химической реакции вредные вещества нейтрализуются, и из выхлопной системы в окружающую среду попадает лишь безвредный выхлоп, состоящий в большей степени из углекислого газа.

Из уроков химии мы знаем, что катализатор — это вещество, которое вызывает или ускоряет химическую реакцию, не влияя на нее. Катализаторы участвуют в реакциях, но не являются ни реагентами, ни продуктами каталитической реакции.

Есть две стадии, через которые проходят вредные газы в катализаторе: восстановление и окисление. Как это работает?

Когда рабочая температура катализатора достигает от 500 до 1200 градусов по Фаренгейту или 250-300 градусов по Цельсию, происходят две вещи: восстановление, и сразу после этого реакция окисления. Это звучит немного сложно, но на самом деле это означает, что молекулы вещества одновременно теряют и получают электроны, из-за чего меняется их структура.

Как работает автомобильный каталитический нейтрализатор?

Восстановление (поглощение кислорода), которое происходит в катализаторе, направлено на превращение оксида азота в экологически чистый газ.

Как работает автомобильный катализатор на стадии восстановления?

Когда закись азота из выхлопных газов автомобиля попадает в катализатор, платина и родий в нем начинают воздействовать на разложение молекул оксида азота, превращая вредный газ в совершенно безвредный.

Что происходит на стадии окисления?

Вторая стадия, которая происходит в катализаторе, называется реакцией окисления, в которой не сгоревшие углеводороды превращаются в диоксид углерода и воду путем смешивания с кислородом (окисление).

Реакции, которые происходят в катализаторе, изменяют химический состав выхлопных газов, изменяя структуру атомом, из которых они состоят. Когда молекулы вредных газов переходят из двигателя в катализатор, он разделяет их на атомы. Атомы, в свою очередь, рекомбинируют в молекулы в относительно безвредные вещества, такие как диоксид углерода, азот и вода, и выбрасываются в окружающую среду через выхлопную систему.

Основными типами каталитических нейтрализаторов, используемых в бензиновых двигателях, являются два: двухсторонний и трехходовой.

Двусторонний

Двустенный (двухсторонний) катализатор одновременно выполняет две задачи: окисляет окись углерода до двуокиси углерода и окисляет углеводороды (не сгоревшее или частично сгоревшее топливо) до двуокиси углерода и воды.

Этот тип автомобильного катализатора использовался в дизельных и бензиновых двигателях для снижения вредных выбросов углеводородов и окиси углерода до 1981 года, но поскольку он не мог преобразовывать оксиды азота, после 81 года его заменили трехкомпонентными катализаторами.

Трехходовой окислительно-восстановительный каталитический нейтрализатор

Этот тип автомобильного катализатора, как выяснилось, был представлен в 1981 году, и сегодня его устанавливают на все современные автомобили. Трехходовой катализатор выполняет три задачи одновременно:

  • восстанавливает оксид азота до азота и кислорода;
  • окисляет окись углерода до двуокиси углерода;
  • окисляет не сгоревшие углеводороды до углекислого газа и воды.

Поскольку этот тип каталитического нейтрализатора выполняет обе стадии катализа — восстановление и окисление, он выполняет свою задачу с эффективностью до 98%. Это означает, что если ваш автомобиль оснащен таким каталитическим нейтрализатором, он не будет загрязнять окружающую среду вредными выбросами.

Типы катализаторов в дизельных двигателях

Для дизельных автомобилей до недавнего времени одним из наиболее часто используемых каталитических нейтрализаторов был дизельный катализатор окисления (DOC). Этот катализатор использует кислород в потоке выхлопных газов для преобразования оксида углерода в диоксид углерода и углеводородов в воду и диоксид углерода. К сожалению, этот тип катализатора эффективен только на 90%, и ему удается устранить запах дизеля и уменьшить видимые частицы, но он не эффективен для снижения выбросов NO x.

Как работает автомобильный каталитический нейтрализатор?

Как обслуживаются катализаторы?

Чтобы не было проблем с катализатором, важно знать, что:

  • Средний срок службы катализатора составляет около 160000 км. Проехав это расстояние, вам нужно подумать о замене преобразователя.
  • Если автомобиль оснащен каталитическим нейтрализатором, вы не должны использовать этилированное топливо, так как оно снижает эффективность катализатора. Единственное подходящее топливо в этом случае — неэтилированное.

Несомненно, преимущества этих устройств для окружающей среды и нашего здоровья огромны, но в дополнение к их преимуществам у них есть и свои недостатки.

Одним из их самых больших недостатков является то, что они работают только при высоких температурах. Другими словами, когда вы заводите автомобиль, каталитический нейтрализатор почти ничего не делает для уменьшения выхлопных газов.

Он начинает работать эффективно только после того, как выхлопные газы нагреваются до 250-300 градусов по Цельсию. Вот почему некоторые производители автомобилей предприняли шаги для решения этой проблемы путем перемещения катализатора ближе к двигателю, что, с одной стороны, улучшает производительность устройства, но сокращает его срок службы, поскольку его близость к двигателю подвергает его воздействию очень высоких температур.

Как работает автомобильный каталитический нейтрализатор?

В последние годы было решено разместить каталитический нейтрализатор под сиденьем пассажира на расстоянии, которое позволит ему работать более эффективно, не подвергаясь воздействию высоких температур двигателя.

Другими недостатками катализаторов являются частое засорение и обжиг пирога. Выгорание обычно происходит из-за не сгоревшего топлива, попадающего в выхлопную систему, которое воспламеняется в подаче катализатора. Засорение чаще всего происходит из-за плохого или неподходящего бензина, естественного износа, стиля вождения и т.д.

Это очень небольшие недостатки на фоне огромных преимуществ, которые мы получаем от использования автомобильных катализаторов. Благодаря этим устройствам ограничиваются вредные выбросы, производимые автомобилями.

Как работает автомобильный каталитический нейтрализатор?

Некоторые критики утверждают, что углекислый газ — тоже вредный выброс. Они считают, что катализатор в автомобиле не нужен, так как из-за таких выбросов усиливается парниковый эффект. На самом деле, если автомобиль не имеет каталитического нейтрализатора и выделяет угарный газ в воздух, этот оксид сам превратится в углекислый газ в атмосфере.

Кто изобрел катализатор?

Хотя катализаторы массово не появлялись до конца 1970-х годов, их история началась намного раньше.

До этого изобретения Гудри изобрел каталитический крекинг, в котором крупные сложные органические химические вещества разделяются на безвредные продукты. Затем он экспериментировал с различными видами топлива, его целью было сделать его более чистым.

Фактическое применение катализаторов в автомобили имело место в середине 1970-х годов, когда были введены более строгие правила контроля выбросов, требующие удаления свинца из выхлопа из-за некачественного бензина.

Вопросы и ответы:

Как проверить наличие катализатора на авто? Для этого достаточно заглянуть под автомобиль. Помимо основного глушителя и малого глушителя (резонатора, который стоит в передней части выхлопной системы), катализатор – еще одна колба.

Где в машине стоит катализатор? Так как катализатор должен работать в условиях с высокой температурой, то он стоит максимально близко к выпускному коллектору. Он находится перед резонатором.

Что такое катализатор в авто? Это каталитический нейтрализатор – дополнительная колба в выхлопной системе. Она заполнена керамическим материалом, соты которого покрыты драгоценным металлом.

При каталитическом дожигании обезвреживание загрязняющих веществ осуществляется при введении окислителя в очищаемую среду в присутствии катализатора. Каталитические нейтрализаторы применяют для предварительной очистки технологических газов: обезвреживания оксидов азота, углерода, летучих углеводородов, растворителей, отработавших газов в химических установках и выхлопов автомобильного транспорта.

Каталитическая очистка применяется в основном при небольших концентрациях удаляемого компонента в очищаемом газе, когда применение прямого сжигания нецелесообразно. В этом случае процесс протекает при температуре 250—400°С, что значительно меньше температуры, требуемой для полного обезвреживания при прямом сжигании в печах (950—1100°С). Катализаторы позволяют достичь высокую степень очистки газовых выбросов, вплоть до 99,9%, но при этом образуются новые вещества, которые надо удалять из газа (для этого, как правило, используются абсорбция и адсорбция).

Различают гомогенный (однородный) и гетерогенный (неоднородный) катализ. При гомогенном катализе реагирующие вещества и катализатор образуют однофазную систему (жидкую или газовую). В качестве примера можно привести реакции горения водорода и оксида углерода, в которых роль катализаторов выполняют активированные частицы.

В промышленности наиболее распространен гетерогенный катализ, в котором катализатор составляет самостоятельную фазу (обычно твердую). Большую часть продукции, вырабатываемой химической и смежными отраслями промышленности, получают с помощью гетерогенного катализа, как правило, газового, т.е. когда ускоряются реакции газовой фазы.

Вызывать усиление химической реакции способны множество факторов: температура, давление, радиационное воздействие. Однако действие катализаторов принципиально от них отличается. Катализатор не влияет ни на равновесие химической реакции, ни на другие термодинамические характеристики реакции, в отличие, например, от температуры, повышение которой может ускорять реакцию вследствие увеличения энергетического уровня реагирующих молекул, т.е. их активации за счет вводимой извне теплоты. Катализатор изменяет в равной степени скорость прямой и обратной реакций и способствует повышению скорости достижения равновесия при данных условиях.

Из уравнения Аррениуса следует, что ускоряющее действие катализаторов сводится к понижению энергии активации реакций образующихся промежуточных соединений [9]:


где k — константа скорости реакции; k0 — предэкспоненциальный множитель; е — основание натурального логарифма; Еа энергия активации, Дж/моль; R — универсальная газовая постоянная, ДжДмоль • К); Т — абсолютная температура, К.

Активность катализатора А характеризует ускоряющее действие катализатора и определяется как отношение констант скоростей реакций, происходящих с участием катализатора kK и без него:


где Е, Ек — энергия активации реакции без катализатора и в присутствии катализатора; ДЕ = Е - Ек снижение энергии активации в присутствии катализатора.

Например, реакция разложения оксида азота без катализатора имеет энергию активации Е - 245 700 Дж/моль, а при наличии платинового катализатора Ек = 136 500 Дж/моль.

Проследим ускоряющее действие катализатора на примере реакции окисления сернистого ангидрида:


которая при отсутствии катализатора протекает крайне медленно; при 420°С (623 К) энергия активации составляет ?* = 420 000 Дж/моль. При проведении этой реакции на ванадиевом катализаторе энергия активации составляет Ек = 268 000 Дж/моль. Подставив эти величины в уравнение (4.8) и учитывая, что R = 8,3 ДжДмоль • К), получаем


т.е. скорость реакции возрастает в сотни миллиардов раз.

В качестве катализаторов применяют оксиды железа, никеля, хрома, меди, цинка, кобальта и более дорогостоящие вещества: платину, палладий, рутений, серебро, которые наносят на некую развитую поверхность (чаще всего А1203) или на металлические материалы (проволоку, сетку, ленту из легированной стали и т.п.). Процесс проводят, как правило, с неподвижным слоем катализатора. Никель, хром и медь обычно не позволяют достичь столь же высокой эффективности очистки, которую обеспечивают более дорогостоящие вещества. Наиболее распространены твердые катализаторы, выпускаемые в виде зерен, таблеток, гранул. Это в основном металлы и их оксиды, например медь, серебро, платина, платиноиды, хром, молибден, железо, никель, кобальт и др. Часто металлы используют в виде дисперсий на поверхности носителей.

Селективность (избирательность) катализаторов по отношению к некоторым реакциям является еще одним очень важным свойством, обеспечивающим возможность увеличивать скорость только определенной реакции и не оказывать заметного влияния на скорость других реакций в системе.

Избирательность действия катализатора /к можно определить как отношение скорости образования целевого продукта к суммарной скорости превращения основного исходного реагента, в нашем случае загрязняющего агента, по всем направлениям:


где dGn изменение количества продукта; vn/vHCX соотношение стехиометрических коэффициентов реагентов в каталитической реакции (мольные соотношения между веществами — участниками реакции) при образовании продукта из основного исходного вещества; dGllcx изменение количества основного исходного реагента.

В процессе эксплуатации катализаторы в той или иной степени подвергаются постепенной дезактивации или деструкции (разрушение), которые вызываются химическими отравлениями, каталитическими ядами, механическим истиранием, спеканием, агрегатированием, что приводит к необходимости периодической регенерации (активации) или замены катализаторов.

Дезактивация катализатора, т.е. снижение его активности в ходе каталитического процесса, является одной из самых важных проблем промышленного катализа, гак как влечет за собой большие эксплуатационные затраты, направленные на снижение интенсивности процесса дезактивации. Дезактивация является следствием одновременного действия сразу нескольких явлений: отравления, спекания и др.

Скорость и степень спекания катализаторов зависят от их химического состава, температуры процесса, температуры окружающей среды и продолжительности процесса. При термической обработке катализатора с нанесенным на него металлом возрастает скорость спекания и ускоряется дезактивация катализатора, что соответственно снижает его активность и селективность.

Отравление катализатора происходит в результате действия ядов и заключается в частичной или полной потере его активности. В случае когда при удалении ядов катализатор восстанавливает свою прежнюю активность, отравление считается обратимым. При необратимом отравлении активность катализатора не восстанавливается и после удаления контактных ядов из зоны реакции. К каталитическим ядам относятся соединения ртути, свинца, мышьяка, цианиды, отравляющие платиновые катализаторы.

Кроме ядов оказывать воздействие на катализаторы могут промоторы — вещества, усиливающие действие катализаторов. Например, синтез аммиака, протекающий на железном катализаторе, может промотироваться диоксидом калия; платиновые катализаторы промотируют добавками железа, алюминия и др.

В присутствии катализатора снижается энергия активации реакции. Изменение реакционного пути происходит в этом случае благодаря образованию промежуточных непрочных продуктов взаимодействия реагирующих веществ с катализатором.

На первой стадии катализатор и реагирующее вещество образуют промежуточное соединение. После этого образовавшееся промежуточное соединение реагирует с другим исходным веществом, давая конечные продукты реакции и высвобождая катализатор. Промежуточные соединения вследствие своей нестойкости имеют малый период жизни и существуют только в процессе катализа.

Схематично реакцию между исходными веществами А и В с участием катализатора К можно представить следующим образом:


где АК — активированное промежуточное соединение; С и D — продукты реакции.

Гетерогенное каталитическое превращение включает в себя несколько процессов:

  • 1) внешнюю диффузию — диффузию исходных реагентов из ядра газового потока к поверхности гранул катализатора;
  • 2) внутреннюю диффузию — проникание этих веществ в норах катализатора к активным центрам его внутренней поверхности;
  • 3) активированную адсорбцию (хемосорбцию) продиффундировав- ших реагентов поверхностью катализатора с образованием поверхностных химических соединений;
  • 4) химическое взаимодействие адсорбированных веществ с образованием новых продуктов;
  • 5) десорбцию продуктов и их перенос к наружной поверхности гранул катализатора (внутренняя диффузия);
  • 6) перенос продукта реакции от поверхности катализатора в ядро газового потока (внешняя диффузия).

Константа скорости каталитического превращения при данной температуре зависит от констант скоростей прямой, обратной и побочной реакций, а также коэффициентов диффузии исходных реагентов и продуктов их взаимодействия. Относительные скорости стадий многоступенчатого процесса гетерогенного каталитического превращения определяют скорость самого процесса, которая лимитируется относительной скоростью самой медленной стадии. Как правило, наиболее медленной стадией, лимитирующей процесс, является диффузионный перенос газообразного вещества через пограничный слой газа (внешнедиффузионная область).

Если каталитический процесс идет во внешнедиффузионной области, то его скорость определяется коэффициентом диффузии реагентов и продуктов реакции в газе. По закону Фика при постоянстве условий диффузии скорость процесса


где dG — количество компонента, перенесенное за время dt в направлении z, перпендикулярном поверхности зерна катализатора, при градиенте концентрации dc/dz диффундирующего компонента в ядре потока реагентов (продуктов реакции); D3 — эффективный коэффициент диффузии, определяемый совокупностью молекулярной и турбулентной (конвективной) диффузии; S — свободная поверхность зерен катализатора.

В случае когда скорость реакции но загрязняющему компоненту А лимитируется внешней диффузией, скорость переноса этого компонента к поверхности зерен катализатора можно определить по уравнению массо- отдачи:


где рг — коэффициент массоотдачи в газовой фазе; 5Ч — внешняя поверхность частицы катализатора; СА, С — концентрации компонента А в газовом потоке и его равновесная концентрация на поверхности частицы катализатора.

Для внутридиффузионной области и реакции первого порядка суммарную скорость каталитического процесса находят, комбинируя уравнение массопередачи с уравнением диффузии и реакции внутри частицы:


где k — константа скорости реакции, отнесенная к 1 м 3 катализатора; V4 объем частиц катализатора; Сло начальная концентрация компонента; Сл средняя концентрация компонента А внутри поры; Сл п — максимально возможная концентрация компонента А у поверхности катализатора.

Общее уравнение скорости каталитического процесса, протекающего в кинетической области, с учетом основных технологических параметров (концентрации, температуры, давления и активности катализатора) имеет вид


где dGn/dt приращение количества продукта во времени; v — насыпной объем катализатора; Ас = с - с0 — движущая сила процесса (или разность между текущей концентрацией вещества с и концентрацией вещества в состоянии равновесия с0) при атмосферном давлении; рх безразмерное давление, т.е. отношение действительного давления к атмосферному; п — порядок реакции.

Интенсивность, или скорость, каталитического превращения может быть выражена в общем виде через количество конвертируемой в единицу времени t примеси GA или количество образующегося в единицу времени продукта Gu каталитического взаимодействия:


где kA, kn соответственно константы скорости процессов по обезвреживаемому компоненту А и продукту реакции; АсА, Дсп — соответственно движущая сила процессов конверсии компонента А и продукта реакции.

Автомобильный катализатор — это что за устройство , как оно функционирует и по каким симптомам можно узнать о его неисправности? Подобный вопрос возникает у многих владельцев, решивших самостоятельно обслуживать автомобиль. Следует учитывать, что цена нового узла составляет несколько десятков тысяч рублей. Грамотная эксплуатация двигателя увеличивает срок службы нейтрализатора отработавших газов.

Катализатор автомобильный

Общая информация про катализатор в автомобиле

Устройство предназначено для дожигания окиси углерода и остатков топлива до компонентов, безвредных для окружающей среды. Первые образцы механизма появились в 60-е гг. прошлого столетия. Установка на серийные машины (как с карбюраторными моторами, так и с оснащенными системой впрыска топлива) началась спустя 20 лет. С 2000-х гг. катализатор является обязательным компонентом выхлопных систем для новых автомобилей.

Расположение

Нейтрализатор находится в выхлопной системе до первичного глушителя (резонатора) шума отработавших газов. Для обеспечения экологических нормативов от Евро-4 узел перенесли ближе к выпускному коллектору (на части двигателей катализатор интегрирован в коллектор).

Подобная технология позволила быстрее прогревать сотовый наполнитель и сократить количество вредных выбросов в атмосферу при работе на обогащенной смеси.

Конструкция устройства

Каталитический нейтрализатор состоит из:

  • внешнего кожуха из жаропрочной нержавеющей стали;
  • входного и отводного патрубков (привариваются или соединяются с выхлопной трубой фланцами);
  • монтажной оболочки, герметично соединенной с патрубками;
  • пористой керамической вставки с адсорбирующим напылением (оксид алюминия и редкоземельные материалы платиновой группы или золото), установленной внутри монтажной оболочки;
  • защитной прокладки между корпусами (для защиты от вибрации и компенсации разницы температурных деформаций);
  • дополнительных элементов (например, монтажной скобы для крепления к днищу автомобиля).

Устройство автомобильного катализатора

Принцип работы

При сгорании топлива образуются экологически безвредные компоненты и одновременно выбрасываются токсичные газы:

  • частицы топлива (углеводородные цепочки вида CHx) и оксиды азота NOx, формирующие облако смога;
  • окись углерода CO, не имеющая запаха и являющаяся ядовитым веществом.

При попадании примесей в нейтрализатор происходит ряд химических реакций, катализатором которых является нагретый слой активного вещества (платины, родия или палладия). В результате распада ядовитых газов образуются азот и кислород (последний используется для дожигания паров топлива и окисления окиси углерода).

Расположенные до и после корпуса нейтрализатора датчики кислорода определяют состав газовой смеси и передают сигнал к блоку управления, который корректируют подачу топлива (для получения стехиометрического состава).

Выхлопная труба

Преимущества эксплуатации

Основные преимущества нейтрализаторов отработавших газов:

  • снижение вредных выбросов в атмосферу;
  • уменьшение расхода топлива за счет автоматической регулировки состава смеси;
  • выбрасываемые в воздух отработавшие газы не имеют запаха бензина.

Основные типы

Нейтрализаторы классифицируют в зависимости от количества дожигаемых компонентов выхлопных газов. Ранние образцы использовались на карбюраторных машинах и позволяли устранять только окись углерода. Последующие двухкомпонентные узлы соответствовали нормативам вплоть до Евро-2. Позднее в требованиях появился пункт, касающийся окислов азота, что потребовало доработки катализаторов.

Двухступенчатый

Нейтрализатор позволяет дожигать окись углерода и остатки топлива (углеводороды CHx) с образованием воды и углекислого газа. Изделие работает при температуре до +400°С и не обеспечивает разложение соединений азота. Изредка встречается на машинах, выпущенных в начале 2000-х гг. Большинство нейтрализаторов выработало ресурс и удалено владельцами.

Трехкомпонентный

Отличается возможностью переработки окислов азота. Для обеспечения реакций требуется прогрев керамической вставки до +600°С. Используется на бензиновых или дизельных силовых агрегатах, работающих на обедненных смесях (для снижения расхода горючего и уменьшения вредных выбросов).

Разновидности по материалу изготовления

Автомобильные каталитические нейтрализаторы разделяют на категории по конструкции наполнителя:

  • стандартные керамические, рассчитанные на максимальную температуру газов до +850°С;
  • металлические, отличающиеся повышенной прочностью;
  • спортивные, рассчитанные на двигатели с повышенной мощностью и создающие пониженное сопротивление потоку.

Керамические

Внутри нейтрализатора установлена керамическая вставка с сотами, поверхность покрыта сплавом платины и родия либо платины и палладия. Конструкция обеспечивает повышенную поверхность соприкосновения газов с активными материалами.

Керамический катализатор

За счет применения керамической основы (магниево-алюминиевого силиката) удалось снизить себестоимость производства, но узел имеет ресурс в пределах 100-150 тыс. км. При использовании топлива соответствующего качества и регулярном техническом обслуживании нейтрализаторы выдерживают до 300 тыс. км и более.

Недостатками изделий является низкая механическая прочность керамической вставки, которая разрушается от вибраций и температурных расширений. На материал оказывает негативное влияние моторное масло, которое выбрасывается из двигателя (например, при износе маслосъемных колпачков на стержнях клапанов).

При засорении сот поток газов замедляется, что приводит к падению мощности и затрудненному пуску холодного двигателя.

Металлические

В таких нейтрализаторах вместо керамики использована гофрированная фольга толщиной до 0,05 мм, прикрепленная к кожуху тугоплавким припоем. Конструкция выдерживает длительный нагрев до +1100 °С и не восприимчива к ударным нагрузкам. На поверхности фольги имеется адсорбирующий слой из окиси алюминия с покрытием из благородных металлов, обеспечивающих окислительные и восстановительные реакции.

Металлические нейтрализаторы имеют повышенную цену и используются при ремонте выхлопных систем автомобилей.

Спортивные

Спортивный катализатор

Катализаторы для гражданских машин создают сопротивление потоку выхлопных газов. На спортивных двигателях используют узлы с повышенной пропускной способностью за счет увеличения габаритов сот. Для обеспечения дожигания на поверхности нанесен увеличенный по толщине слой активного вещества.

Преимуществами изделий являются повышенная температурная стойкость и способность выдерживать ударные и вибрационные нагрузки. Нейтрализаторы могут использоваться в качестве ремонтных (может потребоваться перепрограммирование блока управления).

Особенности каталитического нейтрализатора дизельного двигателя

Двигатели с воспламенением от сжатия (как атмосферные, так и снабженные наддувом) отличаются сниженной термической нагрузкой. В отработавших газах присутствуют частички сажи и окислы азота. Поток выхлопа не в состоянии прогреть нейтрализатор до рабочей температуры, необходимой для разложения частиц NOx.

Для компенсации недостатка применяют систему рециркуляции газов EGR, но ужесточившиеся требования не позволяют уложить выхлоп в нормативы.

В моторах, выпущенных после 2017 г., применяют принудительный впрыск мочевины (система AdBlue) в поток газов перед нейтрализатором. Это вещество вступает в реакцию с окислами азота. Технология позволяет снизить содержание NOx на 90% и используется на моторах, соответствующих категории Евро-5+ и Евро-6.

В конструкцию нейтрализатора входит специальный фильтр Diesel Particulare Filter, улавливающий частицы сажи. Нагар периодически выжигается путем подачи дополнительного топлива, которое догорает в полости фильтра (процесс регенерации).

Сажевый фильтр в катализаторе

Приблизительный срок службы устройства

Период эксплуатации нейтрализатора зависит от качества изготовления наполнителя и используемого топлива.

Владельцы ряда машин сталкиваются с разрушением керамической вставки через 30-50 тыс. км пробега, но большинство катализаторов сохраняет работоспособность вплоть до 150-180 тыс. км.

На территории ЕС автомобили не требуют установки нового катализатора при пробегах больше 300 тыс. км.

Распространенные причины выхода из строя автомобильного катализатора

Нейтрализатор выходит из строя по следующим причинам:

  • разрушение или оплавление керамики;
  • засорение сот нагаром или посторонними частицами.

Разрушение

Под воздействием высоких температур и вибраций керамическая вставка начинает крошиться с образованием мелкой пыли и обломков. Частицы забивают соты и забрасываются в камеры сгорания потоками газов в момент перекрытия клапанов. Детонация двигателя негативно воздействуют на нейтрализатор, ударные волны разбивают перемычки и быстро выводят узел из строя.

Выплавление и выгорание

На состояние катализатора влияет процесс сгорания топлива. При попадании горючего температура в полости нейтрализатора превышает +1000°С, что приводит к оплавлению керамики и засорению сот. Проблема возникает при использовании бензина низкого качества, пропусках зажигания и при неправильной регулировке механизма газораспределения.

Образование нагара

В процессе эксплуатации на поверхности сот оседает нагар (например, от частиц моторного масла), который ухудшает условия дожигания вредных компонентов. Датчики кислорода передают в блок управления ошибочную информацию, что приводит к обеднению или обогащению смеси. Попадающее в нейтрализатор топливо сгорает и разрушает керамические соты, ускоряя выход узла из строя.

Появление инородных частиц

Инородные тела не могут попасть в герметичный корпус нейтрализатора, но при разрушении сот образуются мелкие фрагменты керамики. Обломки попадают в каналы и перекрывают проходное сечение. Из-за нарушения газообмена падает мощность мотора и растет расход топлива, которое частично сгорает в катализаторе и необратимо разрушает узел.

Особенности самостоятельной диагностики автомобильного катализатора

Владелец автомобиля может самостоятельно оценить состояние нейтрализатора и креплений узла к трубопроводам выхлопной системы.

Своевременная диагностика позволяет определить критически поврежденные катализаторы.

Для выполнения работ потребуется набор гаечных ключей и головок. Поскольку болты крепления обгорают под воздействием высоких температур, то понадобится специальная жидкость для отмачивания резьбы (например, WD-40).

Визуальный осмотр

Для осмотра необходимо вывернуть датчики кислорода и осветить внутреннее пространство светодиодным фонариком. Методика позволяет обнаружить разрушение керамики, но оценить состояние поверхности сот невозможно. Не допускается температурная деформация металлического корпуса (наблюдается при перегреве узла из-за сгорания попавшего внутрь топлива).

Температурный тест

адаптер для диагностики

Для его проведения понадобится адаптер ELM327, который подключают к диагностическому разъему. Устройство может собирать информацию от датчиков и передавать ее на сопряженный смартфон с установленным программным обеспечением Car Scanner ELM OBD2. Затем необходимо запустить двигатель и зайти в раздел контроля катализатора.

При нормальных условиях работы максимальная температура внутри нейтрализатора составит около +660°С (внутри устройства предусмотрен чувствительный элемент, непрерывно контролирующий степень нагрева).

Тест на разрушение сот

Программа Car Scanner ELM OBD2 позволяет оценить состояние керамического элемента по сигналам от вторичного датчика кислорода. Для исправного нейтрализатора значение составляет 0. По мере износа параметр увеличивается до 1,0 (сигнал о выходе узла из строя, включающий контрольный индикатор Check Engine). При нормальных условиях эксплуатации нижний порог сигнала от сенсора лежит в пределах от 0,05 до 0,2 (зависит от режима движения, температуры и влажности воздуха, качества заправленного топлива).

Проверка давления

Для оценки проходимости сот необходимо:

  1. Отвернуть первичный датчик кислорода (находится перед корпусом нейтрализатора).
  2. Установить резьбовую втулку с термостойким шлангом, соединенным с манометром.
  3. Запустить двигатель и довести обороты до 2,5-3,0 тыс. в минуту.
  4. Через 10-15 секунд заглушить мотор. Нормой считается давление в пределах 0,3-0,35 кг/см², рост параметра до 0,5 кг/см² и выше указывает на частичное засорение сотовой вставки нейтрализатора.

Ослабление болтов

Для быстрого тестирования в гаражных условиях необходимо ослабить болты крепления нейтрализатора к коллектору, а затем запустить двигатель. Если пуск происходит без затруднений, то следует детально осмотреть катализатор.

Методика не подходит для двигателей, оснащенных нейтрализатором, совмещенным с выпускным коллектором (разъединить детали можно только абразивным инструментом).

При тестировании возможно появление ошибок от датчиков кислорода из-за подтягивания атмосферного воздуха через образовавшиеся щели.

Действия при возникновении неполадок нейтрализатора

При разрушении наполнителя возможно включение предупредительного индикатора Check Engine, расположенного в комбинации приборов. Необходимо проверить состояние датчиков концентрации кислорода и соединительных жгутов. Если обнаруживается повреждение или выход из строя нейтрализатора, то владелец автомобиля может поменять узел или удалить керамическую вставку с перепрограммированием блока управления (необходим софт, не учитывающий корректировку состава смеси по сигналам от датчиков концентрации кислорода).

Нюансы замены

Перед снятием или заменой катализатора своими силами следует учесть, что вмешательство приводит к снятию автомобиля с гарантийного обслуживания. Корпус нейтрализатора аккуратно разрезают абразивным кругом, а затем удаляют керамический наполнитель. Материал можно сдать: иногда цена отходов компенсирует стоимость ремонта выхлопной системы. В полость устанавливают металлический пламегаситель, а затем заваривают корпус дуговой сваркой в среде защитного газа.

установка пламегасителя

Ремонт

Изношенный катализатор не подлежит восстановлению. Владелец машины может:

  • установить оригинальный нейтрализатор или коллектор (цена запасных частей достигает 100 тыс. руб.);
  • использовать универсальный катализатор (обладает пониженной в 3-4 раза ценой, но не всегда соответствует требованиям завода-изготовителя двигателя);
  • полностью отказаться от нейтрализатора (с последующим перепрограммированием блока управления).

Тонкости удаления катализатора из выхлопной системы

После удаления нейтрализатора необходимо установить вторичный датчик кислорода с обманкой (перфорированной емкостью, заполненной керамической крошкой с активным напылением). Поток газов проходит через наполнитель, имитируя нормальную работу нейтрализатора. Если производится перепрограммирование блока управления мотором, то обманка не требуется. После снятия катализатора выхлоп соответствует нормативам Евро-2 и ниже, что может создать проблемы при официальном прохождении технического осмотра в ряде стран Европы, но не в России.

Дополнительным недостатком выхлопной системы без нейтрализатора является повышенная температура потока газов, что приводит к ускоренному выходу из строя резонатора и глушителя.

Снятие катализатора не оказывает негативного воздействия на ресурс двигателя. Расход топлива зависит от версии установленной прошивки. Следует учесть, что модернизированная выхлопная система меняет звук работы двигателя (тональность становится ниже и громче), что устраивает не всех владельцев.

Промывка автомобильного катализатора своими руками

Удаление загрязнений позволяет продлить ресурс нейтрализатора только в случае обработки исправного узла. Если сотовый наполнитель оплавился или имеет механические повреждения, то восстановить работоспособность невозможно. Существуют методики химической и механической очистки (без демонтажа и со снятием изделия соответственно). Работы выполняют самостоятельно или в условиях сервиса.

Профилактическая

Профилактическая или химическая чистка подразумевает заправку в топливный бак специального реагента (например, раствора Hi-Gear HG3270). Пропорции смеси указаны на заводской этикетке. После пуска мотора жидкость попадает в цилиндры и выбрасывается с потоком выхлопных газов в нейтрализатор.

Активные компоненты растворяют налет на поверхности наполнителя и выбрасывают частицы в атмосферу.

Механическая

Данный процесс требует снятия автомобильного катализатора. Для удаления грязи применяют поток сжатого воздуха, наждачную бумагу с мелким зерном и растворитель (например, жидкость для промывки карбюраторов). Корпус нейтрализатора заполняют моющим препаратом, а затем прочищают потоком горячей воды и сжатым до 7-9 бар воздухом. Нагар с торцевых кромок наполнителя удаляют наждачной бумагой. Технология не позволяет полностью очистить внутренние поверхности сот. При выполнении работ следует контролировать давление воздуха (из-за риска разрушения керамики).

Отрицательные стороны автомобильного катализатора

Основным недостатком каталитического нейтрализатора является ограниченный срок службы, который сокращается при использовании топлива с присадками на основе свинца. По мере оплавления сот уменьшается проходное сечение каналов, что приводит к снижению мощности двигателя и росту расхода горючего. Дополнительной проблемой является разрушение наполнителя. Мелкодисперсная керамическая пыль может попасть в цилиндры в момент перекрытия клапанов.

Читайте также: