В цилиндре двигателя внутреннего сгорания при работе образуются газы температура которых 727 с

Обновлено: 07.07.2024

Тепловым двигателем называют машину, в ходе работы которой внутренняя энергия переходит в механическую. Самую простую модель такой машины можно представить в виде металлического цилиндра и плотно пригнанного поршня, который может двигаться вдоль цилиндра.

Одним из самых распространённых видов теплового двигателя, который мы встречаем в жизни, является двигатель внутреннего сгорания (ДВС). Топливо в нем сгорает прямо в цилиндре, внутри самого двигателя. Легко догадаться, что отсюда и пошло его название.

В данном уроке мы рассмотрим устройство двигателя внутреннего сгорания и схему его работы.

Устройство двигателя внутреннего сгорания

Тепловые двигатели такого типа работают на жидком и газообразном топливе. Этим топливом могут быть нефть, бензин, керосин, различные горючие газы.

На рисунке 1 изображена схема простейшего двигателя внутреннего сгорания в разрезе.

Двигатель представляет собой прочный металлический цилиндр. Внутри этого цилиндра имеется подвижный поршень 3. Поршень соединения шатуном 4 с коленчатым валом 5.

В верхней части двигателя расположены два клапана 1 и 2. Когда двигатель работает, они автоматически открываются и закрываются в определенные нужные моменты.

Через клапан 1 в цилиндр двигателя поступает горючая смесь. Она воспламеняется с помощью свечи 6.

Горючая смесь — это смесь горючих газов, частиц жидкого топлива и паров топлива с воздухом (кислородом).

Отработавшие газы выпускаются через клапан 2.

Периодически в цилиндре происходит сгорание горючей смеси. Например, сгорает смесь паров бензина и воздуха. Образуются газообразные продукты сгорания. Их температура при этом достигает высоких значений — $1600-1800 \degree C$. В результате этого резко увеличивается давление на поршень.

Эти газы (продукты сгорания) толкают поршень. При движении поршня двигается и коленчатый вал. Таким образом газы совершают механическую работу. Т. е., часть внутренней энергии газов перешла в механическую энергию. Следовательно, внутренняя энергия газов уменьшилась — они начинают охлаждаться.

Мертвые точки, ход поршня и такты двигателя

Для того чтобы более подробно рассмотреть схему работы данного двигателя, нам понадобятся новые определения.

Поршень может двигаться внутри цилиндра. В устройстве самого простого вида, который мы рассматриваем, он может двигаться вверх и вниз.

Мёртвые точки — это крайние точки положения поршня в цилиндре.

Ход поршня — это расстояние, которое проходит поршень от одной мертвой точки до другой.

Рассматриваемые нами двигатели внутреннего сгорания называют четырехтактными.

Четырехтактный двигатель — это двигатель, в котором один рабочий цикл происходит за четыре хода поршня (за четыре такта).

Один такой такт двигателя или ход поршня происходит за половину оборота коленчатого вала.

Схема работы двигателя внутреннего сгорания: четыре такта

Теперь давайте подробно рассмотрим все четыре такта работы двигателя (рисунок 2).

Рисунок 2. Схематическое изображение работы двигателя внутреннего сгорания

Первый такт (рисунок 2, а):

  • При повороте коленчатого вала в самом начале такта поршень начинает двигаться вниз
  • Объем над поршнем увеличивается
  • В цилиндре образуется разрежение
  • Открывается клапан 1. В цилиндр поступает горючая смесь
  • Цилиндр заполняется горючей смесью. Клапан 1 закрывается

Второй такт (рисунок 2, б):

  • Вал продолжает поворачиваться, поршень теперь двигается вверх
  • Таким образом поршень сжимает горючую смесь
  • Поршень доходит до верхней мертвой точки
  • Сжатая горючая смесь воспламеняется от электрической искры (свеча 6) и сгорает

Третий такт (рисунок 2, в):

  • При сгорания смеси образуются газы. Они давят на поршень — толкают его вниз
  • Под действием этих расширяющихся нагретых газов двигатель совершает работу. Поэтому,

Третий такт двигателя — это рабочий ход.

  • Поршень двигается вниз. Его движение передается шатуну и коленчатому валу
  • Получив сильный толчок, коленчатый вал с маховиком продолжают вращение по инерции. При этом они приводят в движение поршень при последующих тактах

Заметьте, что на втором и третьем тактах двигателя клапаны закрыты.

  • В конце такта открывается клапан 2. Продукты сгорания начинают выходить из цилиндра в окружающую среду

Четвертый такт (рисунок 2, г):

  • Идет выход продуктов сгорания из цилиндра (клапан 2 открыт)
  • Поршень движется вверх
  • В конце этого такта клапан 2 закрывается

Цикл двигателя состоит из четырех тактов:
впуск
сжатие
рабочий ход
выпуск

Создание и применение двигателя внутреннего сгорания

Четырехтактный двигатель внутреннего сгорания рассмотренного нами вида изобрел немецкий инженер Рудольф Дизель (рисунок 3).


Рисунок 3. Рудольф Кристиан Карл Дизель (1858 — 1913)

Двигатели внутреннего сгорания имеют очень широкое применение. В ходе их усовершенствования, в мире появлялись новые средства передвижения. Например, автомобили, мотоциклы, самолеты, вертолеты, космические корабли, ракеты, суда на воздушной подушке.

В автомобилях чаще всего стоят четырехцилиндровые двигатели внутреннего сгорания. В каждом цилиндре по очереди происходит рабочий ход. Поэтому коленчатый вал постоянно получает энергию от одного из поршней.

Существуют и двигатели с другим количеством цилиндров. Многоцилиндровые двигатели лучше обеспечивают равномерность вращения вала и имеют большую мощность.

Огнестрельное оружие является простейшим примером ДВС. Цилиндром является ствол оружия, а поршнем — выбрасываемые из оружия пули или снаряды.

Использование ДВС обеспечило быстрый прогресс в военной индустрии: были разработаны танки, истребители, подводные лодки.

В настоящее время двигатели внутреннего сгорания установлены практически на каждом виде транспорта, которым мы пользуемся. Они приводят в движение самолеты, теплоходы, автомобили, тракторы, тепловозы. Мощные двигатели внутреннего сгорания устанавливают на речных и морских судах.

В цилиндре двигателя с некоторой периодичностью осуществляются термодинамические циклы, которые сопровождаются непрерывным изменением термодинамических параметров рабочего тела — давления, объема, температуры. Энергия сгорания топлива при изменении объема превращается в механическую работу. Условием превращения теплоты в механическую работу является последовательность тактов. К этим тактам в двигателе внутреннего сгорания относятся впуск (наполнение) цилиндров горючей смесью или воздухом, сжатие, сгорание, расширение и выпуск. Изменяющимся объемом является объем цилиндра, который увеличивается (уменьшается) при поступательном движении поршня. Увеличение объема происходит вследствие расширения продуктов при сгорании горючей смеси, уменьшение — при сжатии нового заряда горючей смеси или воздуха. Силы давления газов на стенки цилиндра и на поршень при такте расширения превращаются в механическую работу.

Аккумулированная в топливе энергия превращается в тепловую энергию при совершении термодинамических циклов, передается стенкам цилиндров путем теплового и светового излучения, радиацией и от стенок цилиндров — охлаждающей жидкости и массе двигателя путем теплопроводности и в окружающее пространство от поверхностей двигателя свободной и вынужденной

конвекцией. В двигателе присутствуют все виды передачи теплоты, что свидетельствует о сложности происходящих процессов.

Использование теплоты в двигателе характеризуется КПД, чем меньше теплоты сгорания топлива отдается в систему охлаждения и в массу двигателя, тем больше совершается работы и выше КПД.

Рабочий цикл двигателя осуществляется за два или четыре такта. Основными процессами каждого рабочего цикла являются такты впуска, сжатия, рабочего хода и выпуска. Введение в рабочий процесс двигателей такта сжатия позволило максимально уменьшить охлаждающую поверхность и одиовремепио повысить давление сгорания топлива. Продукты горения расширяются соответственно сжатию горючей смеси. Такой процесс позволяет сократить тепловые потери в стенки цилиндров и с выпускными газами, увеличить давление газов на поршень, что значительно повышает мощностные и экономические показатели двигателя.

Реальные тепловые процессы в двигателе существенно отличаются от теоретических, основанных па законах термодинамики. Теоретический термодинамический цикл является замкнутым, обязательное условие его осуществления — передача теплоты холодному телу. В соответствии со вторым законом термодинамики и в теоретической тепловой машине полностью превратить тепловую энергию в механическую невозможно [67, с. 47J.

Двигатель внутреннего сгорания является тепловой машиной циклического действия. Рабочий цикл и его такты повторяются через строго определенный промежуток времени, т.е. с определенной периодичностью. Время совершения одного рабочего цикла определяется частотой вращения коленчатого вала и для четырехтактного двигателя равно:


где пе частота вращения коленчатого вала двигателя.

Частота вращения четырехтактных тракторных дизелей находится в пределах 1500. 2400 мин -1 , автомобильных дизелей —

2400. 5600 мин -1 . При указанных частотах вращения время совершения цикла рабочего процесса у тракторных дизелей находится в пределах 8 • 10 . 5 • 10 -2 с, автомобильных — 5 • 10. 2 • 10 -2 с и бензиновых двигателей — 5 • 10 -2 . 2 • 10 -2 с.

Продолжительность одного отдельно взятого такта обусловливается углом поворота коленчатого вала. Наибольшее время отводится тактам впуска и выпуска, наименьшее — сжатию и расширению вместе со временем сгорания горючей смеси. Соответственно этим промежуткам времени сохраняется значение термодинамических параметров — температуры и давления.

Продолжительность тактов определяется диаграммой фаз газораспределения и для четырехтактных двигателей равно:


где срт — угол поворота коленчатого вала при совершении такта, в градусах.

Среднестатистическое значение угла поворота коленчатого вала дизеля при впуске равно 245°, сжатия — 134°, расширения — 122° и выпуска — 258°. При частоте вращения коленчатого вала 2400 мин -1 продолжительность такта впуска составляет 1,67 • 10“ 2 с, сжатия — 9,31 • 1(Г 3 с, расширения — 8,47 • 1(Г 3 с и выпуска — 1,36 • 10- 2 с.

В эти бесконечно малые промежутки времени изменяется и температура в цилиндрах двигателя. Скорость изменения температуры при совершении тактов зависит от перепада температур рассматриваемого Т2 и предыдущего 7 тактов ко времени совершения такта:


Рассмотрим подробно каждый из тактов.

При такте впуска поршень перемещается от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ), вследствие увеличения объема цилиндра и снижения в нем давления цилиндр заполняется рабочей смесью у бензиновых двигателей или свежим зарядом воздуха у дизелей. Сложность тепловых процессов, происходящих в цилиндре при впуске, состоит в том, что в цилиндре сохраняются остаточные газы от предыдущего такта и достаточно высокая температура внутренних поверхностей цилиндра, головки и поршня. Свежий заряд смешивается с остаточными газами, а также подогревается вследствие контакта с горячими поверхностями

во впускном тракте и в цилиндре. Температура в конце такта впуска зависит от количества остаточных газов, оставшихся в цилиндре. Ориентировочно принимается, что 1 % в рабочем заряде остаточных газов нагревает заряд на 8 °С [2, с. 35]. В дизелях, цилиндры которых заполняются свежим зарядом воздуха и имеют высокие степени сжатия, температура горючей смеси в конце такта впуска составляет 310. 350 К, что объясняется относительно небольшим количеством остаточных газов, в бензиновых двигателях температура впуска в конце такта составляет 340. 400 К [17, с. 104]. Тепловой баланс горючей смеси при такте впуска можно представить в виде


где ?)р т — количество теплоты рабочего тела в начале такта впуска; Ос.ц — количество теплоты, поступившее в рабочее тело при контакте с нагретыми поверхностями впускного тракта и цилиндра; Qo г — количество теплоты в остаточных газах.

Из уравнения теплового баланса можно определить температуру в конце такта впуска. Примем массовое значение количества свежего заряда тс з, остаточных газов — то г При известной теплоемкости свежего заряда сР, остаточных газов с'р и рабочей смеси ср уравнение (2.34) представляется [17, с. 104] в виде


где Тс з — температура свежего заряда перед впуском; АТсз — подогрев свежего заряда при впуске его в цилиндр; Тг — температура остаточных газов в конце выпуска. Возможно с достаточной точностью считать, что с'р = ср и с'р - с,ср, где с; — поправочный коэффициент, зависящий от Тсз и состава смеси. При а = 1,8 и дизельном топливе -1 и фа = 260° составляет сод = (2,9. 3,9) • 10 4 град/с. Таким образом, температура в конце такта впуска в цилиндре определяется массой и температурой остаточных газов после такта выпуска и нагревом свежего заряда от деталей двигателя. Графики функции cort =/(Де) такта впуска для дизелей и бензиновых двигателей, представленные па рис. 2.13 и 2.14, свидетельствуют о значительно большей скорости изменения температуры в цилиндре бензинового двигателя в сравнении с дизелем и, следовательно, большей интенсивности теплового потока от рабочего тела и ее росте с увеличением частоты вращения коленчатого вала. Среднестатистическое расчетное значение скорости изменения температуры при такте впуска дизеля в пределах частоты вращения коленчатого вала 1500. 2500 мин -1 равно = 2,3 • 10 4 ± 0,18 град/с, а у бензинового

двигателя в пределах частоты вращения 2000. 6000 мин -1 — соя = = 4,38 • 10 4 ± 0,16 град/с. При такте впуска температура рабочего тела примерно равна рабочей температуре охлаждающей жидкости,

Скорость изменения температуры тактов в зависимости от частоты вращения коленчатого вала дизеля

Рис. 2.13. Скорость изменения температуры тактов в зависимости от частоты вращения коленчатого вала дизеля

Скорость изменения температуры тактов в зависимости от частоты вращения коленчатого вала бензинового двигателя

Рис. 2.14. Скорость изменения температуры тактов в зависимости от частоты вращения коленчатого вала бензинового двигателя

теплота стенок цилиндра расходуется на нагрев рабочего тела и не оказывает существенного влияния на температуру охлаждающей жидкости системы охлаждения.

При такте сжатия происходят достаточно сложные процессы теплообмена внутри цилиндра. В начале такта сжатия температура заряда горючей смеси меньше температуры поверхностей стенок цилиндра и заряд нагревается, продолжая отнимать теплоту от стенок цилиндра. Механическая работа сжатия сопровождается поглощением теплоты из внешней среды. В определенный (бесконечно малый) промежуток времени температуры поверхности цилиндра и заряда смеси выравниваются, вследствие чего теплообмен между ними прекращается. При дальнейшем сжатии температура заряда горючей смеси превышает температуру поверхностей стенок цилиндра и тепловой поток изменяет направление, т.е. теплота поступает к стенкам цилиндра. Общая отдача теплоты от заряда горючей смеси незначительна, она составляет около 1,0. 1,5 % от количества теплоты, поступающей с топливом.

Температура рабочего тела в конце впуска и его же температура в конце сжатия связаны между собой уравнением политропы сжатия:


где 8 — степень сжатия; пл показатель политропы.

Температура в конце такта сжатия по общему правилу рассчитывается по среднему постоянному для всего процесса значению показателя политропы щ. В частном случае показатель политропы рассчитывается по балансу теплоты в процессе сжатия [33, с. 89J. На основании первого закона термодинамики


где Uc и Uа внутренняя энергия заряда рабочего тела в точке с (конец сжатия) и в точке а (начало сжатия); Lac — теплота, эквивалентная работе политропного сжатия па участке а-с индикаторной диаграммы.

Для количества сжимаемого рабочего тела, состоящего из свежего заряда М (кмоль) и Мг (кмоль) остаточных газов, уравнение (2.38) представляется [33, с. 89] в виде


где ис и и" — внутренняя энергия 1 кмоля свежего заряда; иа и и" — внутренняя энергия 1 кмоля остаточных газов.

Совместное решение уравнений (2.37) и (2.39) при известном значении температуры Та позволяет определить показатель политропы щ. На показатель политропы влияет интенсивность охлаждения цилиндра. При низких температурах охлаждающей жидкости температура поверхности цилиндра ниже, следовательно, и пл будет меньше.

Значения параметров конца такта сжатия [15, с. 93] приведены в табл. 2.3.

Система рециркуляции отработавших газов (EGR – Exhaust Gas Recirculation) предназначена для снижения в выхлопных газах оксидов азота за счет возврата части отработавших газов во впускной коллектор и далее в цилиндры двигателя.

Отработавшие газы, образующиеся при сгорании топливовоздушной смеси в двигателе внутреннего сгорания, содержат загрязняющие вещества, такие как оксид углерода (CO), оксиды азота (NOx), углеводороды (HC) и твердые частицы (PM), которые очень вредны для человека и окружающей среды.

Особо токсичны оксиды азота, которые образуются при высокой температуре и избытке кислорода. Оба эти условия присутствуют в процессе сгорания топлива в любом двигателе, но особенно много их образуется в высокофорсированном дизеле, поскольку воздух, поступающий в его цилиндры, не дросселируются и всегда имеется его избыток. Кроме того, в камерах сгорания возникает высокая температура, а чем она выше, тем больше образуется оксидов азота. По этим причинам дизельный двигатель выбрасывает намного больше оксидов азота в выхлопных газах по сравнению с бензиновым.

Возврат части отработавших газов (ОГ) во впускной коллектор позволяет снизить температуру сгорания топливовоздушной смеси и тем самым уменьшить образование оксидов азота. При этом соотношение компонентов в смеси остается прежними и мощностные характеристики двигателя изменяются незначительно.

Система рециркуляции отработавших газов (EGR) применяется в основном на дизельных двигателях, реже - на бензиновых.

В зависимости от требований стандарта токсичности ОГ, на дизельных двигателях применяются различные схемы системы рециркуляции ОГ: высокого давления, низкого давления и гибридная (комбинированная) система рециркуляции.

EGR, дизельный двигатель, коллектор

EGR высокого давления наиболее распространена и применяется на дизельных двигателях, соответствующих требованиям Евро 4 (содержание оксида азота в отработавших газах не более 0,25 г/км). Система обеспечивает отвод части ОГ из выпускного коллектора перед турбокомпрессором и подачу их в канал перед впускным коллектором. (Bosch).

Данная система имеет высокие показатели быстродействия газового контура рециркуляции. Кроме того, поскольку выхлопной газ смешивается с всасываемым воздухом после турбокомпрессора, твердые частицы не попадают на колесо компрессора и не разрушают его. Однако охладитель EGR при этом должен выдерживать разрушительное воздействие высокого давления и высокой температуры выхлопных газов.

В такой системе для осуществления процесса перепуска имеется специальный клапан рециркуляции, который оснащен пневматическим или электрическим приводом.

Количество перепускаемых газов регулируется с помощью системы управления двигателем, которая одновременно управляет дроссельной заслонкой и клапаном рециркуляции. EGR не работает на холостом ходу, при холодном двигателе, а также при полностью открытой дроссельной заслонке.

На отдельных двигателях в EGR применяется охлаждение ОГ путем прохождения их через специальный радиатор. Вследствие этого дополнительно снижается температура сгорания в цилиндрах и, тем самым, уменьшается образование оксидов азота.

Стандарт Euro 6 повысил требования, снизив лимит выбросов NOx до 0,08 г/км по сравнению со 0,18 г/км для Euro 5. Реализация более жестких условий потребовала создания системы рециркуляции низкого давления.

Bosch, радиатор, турбокомпрессор

В системе рециркуляции низкого давления отработавшие газы отводятся после сажевого фильтра, охлаждаются в специальном радиаторе, проходят через клапан рециркуляции и подаются во впускную систему перед турбокомпрессором. (Bosch).

Такая система обеспечивает меньшую температуру ОГ, отсутствие частиц сажи и, в конечном счете, меньшее содержание оксидов азота в выхлопе. Помимо этого, все отработавшие газы проходят через турбину компрессора, поэтому давление наддува не снижается ни на каком режиме.

Из-за более низких температур EGR низкого давления более эффективна в снижении выбросов NOx по сравнению с системой высокого давления. Но у нее есть и недостаток - более высокая инерционность выхлопных газов, поскольку все воздуховоды и компоненты расположены относительно далеко от двигателя и не могут быстро реагировать на изменение скорости рециркуляции ОГ.

Гибридная (комбинированная) EGR объединяет в одном двигателе систему рециркуляции ОГ высокого и низкого давления. Иногда такой тип называют двухконтурной системой EGR.

Гибридная EGR сочетает в себе преимущества обоих систем, переключаясь между ними в зависимости от частоты вращения и крутящего момента, а также позволяет турбонагнетателю работать с высоким КПД на любом режиме.

Недостаток двухконтурной EGR - большая стоимость, сложность и для нее требуется большее пространство для размещения (обусловленные большим количеством компонентов), а также потенциальными проблемами с управлением скоростью рециркуляции ОГ в зависимости от режима работы двигателя. Алгоритм управления становится довольно сложным, поскольку необходимо управлять несколькими исполнительными механизмами (клапаном рециркуляции ОГ высокого/низкого давления, дроссельной заслонкой на впуске/выпуске и лопатками турбины/перепускным клапаном) для подачи необходимого количества воздуха и ОГ в цилиндры на различных режимах.


Привет, кто подскажет ответики на вопросы в конце § 22. ?
§ 22. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
1) Какой двигатель называют двигателем внутреннего сгорания?
2) Пользуясь рисунком, расскажите, из каких основных частей состоит простейший двс.

3) За сколько тактов происхзодит один рабочий цикл двигателя?
Сколько оборотов делает при этом вал двигателя?
4) Какие процйессы происходят в двигателе в течении каждого из четырех тактов?
Как называют эти такты?
Какую роль играет маховик в двигателе внутреннего сгорания?

Хай, там же в параграфе все написано, как вы читаете? или ленитесь?
§ 22. ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ
1. Двигатель внутреннего сгорания - это тепловой двигатель, топливо в котором сгорает прямо в цилиндре внутри самого двигателя.
2. Простейший двигатель внутреннего сгорания состоит из цилиндра, в котором перемещается поршень, соединенный внизу шатуном с коленчатым валом. Два клапана в верхней части цилиндра открываются и закрываются автоматически в нужные моменты. Один клапан служит для подачи в цилиндр горючей смеси, воспламеняющейся от свечи, другой клапан выпускает отработавшие газы.
3. При сгорании горючей смеси в двигателе внутреннего сгорания сначала значительно повышается температура до 1600°C-l800°C и давление на поршень возрастает, газы, расширяясь, толкают поршень и коленчатый вал, совершая механиче­скую работу. Газы при этом охлаждаются, так как часть их внутренней энергии превращается в механическую энергию.
4. Рабочий цикл двигателя происходит за четыре хода (такта) поршня, при этом коленчатый вал делает два оборота.
5. Такты поршня имеют названия в соответствии с происходящими в них процессами: впуск, сжатие, рабочий ход и выпуск. Впуск - поршень движется вниз, в цилиндре создается разряжение, открывается клапан и в цилиндр поступает горючая смесь, клапан закрывается, коленчатый вал совершает пол-оборота. Сжатие - коленчатый вал продолжает поворот, поршень движется вверх и сжимает горючую смесь, она воспламеняется от искры и быстро сгорает. Рабочий ход - поршень под давлением газов опускается вниз, передавая толчок шатуну и коленчатому валу с маховиком при закрытых клапанах. В конце третьего такта открывается другой клапан для выпуска продуктов сгорания в атмосферу. Выпуск - поршень движется вверх, продукты сгорания выходят через клапан, в конце такта клапан закрывается.
6. Маховик, обладая значительной инерционностью, необходим для передачи движения поршню в следующих тактах.

Читайте также: