Диагностика кшм ваз 2114

Обновлено: 02.07.2024

ВАЗ 2114 — российский хэтчбек, пришедший на замену снятой с производства девятки. Изменения коснулись не только внешних частей кузова (новые фары, капот, бампера, молдинги, решетка радиатора), но и салона.
Современный внешний вид автомобилю ВАЗ 2114 придают молдинги вдоль всех бортов, спойлер со стоп-сигналом и накладки на порогах. Внешние изменения ВАЗ 2114 себя оправдывают, наделяямашину отличными аэродинамическими качествами, а также устойчивостью на дороге даже при больших скоростях. Бамперы, молдиниги и прочие навесные детали выдержаны в одной цветовой гамме с кузовом, либо выполнены в черном цвете, что придает модели ВАЗ 2114 сходство с иномарками и создает для покупателей возможность выбора дизайна экстерьера авто.
За свой внешний вид автомобиль полюбился людям,занимающимся тюнингом. А полюбился за счет того, что при небольших затратах ВАЗ 2114 можно сделать индивидуальным, выделяющимся из общего автомобильного потока.

Технические данные ВАЗ 2114
Как видно из таблицы с техническими характеристиками ВАЗ 2114, разница с моделями своего класса заключается только в размерах кузова. Восьмиклапанный двигатель 1,6 литра устанавливается на многие модели АвтоВАЗа,поэтому ждать каких то особых характеристик не стоит. Привод — передний, коробка — как у всех, так сказать стандартная. Отличия хэтчбека от седанов заключаются в объеме богажника, который увеличивается при сложенных спинках заднего сиденья. Сравнивать показатели ВАЗ 2114 с классикой смысла нет — аэродинамика за счет более сглаженных линий кузова придает автомобилю легкость в управлении. Ну а востальном ВАЗ 2114 — обычный российский автомобиль, который завоевывает сердца автолюбителей благодаря внешнему виду.

Кривошипно-шатунный механизм
Кривошипно-шатунный механизм является основой конструкции поршневых двигателей внутреннего сгорания. Он предназначен для восприятия давления газов, которые возникают в цилиндрах во время сгорания топлива, ипревращения возвратно-поступательного движения поршней во вращательное движение коленчатого вала.
Устройство Кривошипно-шатунного механизма ВАЗ 2114
1. Крышка шатуна
2. Болт крепления крышки шатуна
3. Шатун
4. Поршень
5. Терморегулирующая пластина поршня
6. Маслосъемное кольцо
7. Нижнее компрессионное кольцо
8. Верхнее компрессионное кольцо
9. Разжимная пружина
10. Поршневой палец
11. Вкладыш шатунногоподшипника
12. Упорные полукольца среднего коренного подшипника
13. Вкладыши коренного подшипника
14. Каналы для подачи масла от коренного подшипника к шатунному
15. Держатель заднего сальника коленчатого вала
16. Задний сальник коленчатого вала
17. Штифт для датчика ВМТ
18. Метка (лунка) ВМТ поршней 1-го и 4-го цилиндра
19. Шкала в люке картера.

При контролируемом сгорании топлива в ДВС автомобиля поршням придается возвратно поступательное движение. Для преобразования его в крутящий момент служит узел КШМ – кривошипно-шатунный механизм, шарнирно закрепленный к поршням и коленвалу. Основных неисправностей немного, но для устранения требуется полная разборка двигателя.

КШМ

Конструкция КШМ

В отличие от прочих агрегатов автомобиля конструкция механизма кривошипно-шатунного условно включает в себя часть поршневой группы и коленчатый вал. Состоит КШМ из подвижных деталей и неподвижных элементов. Одну или несколько степеней свободы имеют:

  • шатун и поршень;
  • кольца компрессионные, стопорные и маслосъемные;
  • палец поршневой и кольцо стопорное;
  • вкладыши, болт крепежный и крышка шатуна; и коленвал;
  • противовес и шейки шатунные, коренные;
  • вкладыши.

К неподвижным элементам относятся головка и блок цилиндров.

В зависимости от конструкции ДВС и количества цилиндров кинематика кривошипно шатунного механизма несколько видоизменяется:

  • в рядном двигателе плоскость коленвала и цилиндров полностью совпадает;
  • в VR-образном моторе происходит смещение на угол 15 градусов;
  • в W-образном приводе величина смещения достигает 72 градусов.

Другими словами, в рядном двигателе рабочий цикл осуществляется поочередно 4-мя цилиндрами, что позволяет равномерно распределить нагрузки на коленвал. Для достижения компактных размеров ДВС модификации с большим количеством цилиндров размещаются V-образно. Что так же позволяет смягчить нагрузки на коленвал за счет гашения части энергии.

Чертеж КШМ

Устройство КШМ

Чтобы характеристика кривошипно шатунного механизма была стабильной в момент перегрузок (высокая температура, большое давление и обороты, трудности с подачей смазки), вместо шариковых/роликовых подшипников применяются элементы скольжения с шатунными и коренными вкладышами. Неравномерность угловых скоростей вала в отдельных циклах сглаживается массивным маховиком за счет инертности этой детали.

Принцип действия и назначение

В отличие от электродвигателя принцип действия КШМ в двигателях внутреннего сгорания значительно сложнее:

  • поршни поочередно выталкиваются из цилиндров при воспламенении топливной смеси;
  • внутри них шарнирно закреплены шатунные детали сложной конфигурации;
  • коленчатый вал имеет ответную посадочную поверхность П-образного типа для нижней головки шатуна, что обеспечивает смещение от оси вращения вала;
  • за счет фиксированного расстояния между поршнем и коленвалом шатун описывает амплитуду в виде восьмерки, за счет чего и преобразуется поступательное движение с цилиндров в крутящий момент на валу.

Основное назначение расходных элементов КШМ (вкладыши, втулки, кольца) заключается в увеличении эксплуатационного ресурса этого узла. Поскольку число цилиндров достигает 16 штук в современных авто, устройство и работа механизма КШ должна быть идеально сбалансирована.

Поломки и проблемы кривошипно-шатунного механизма

Практически все детали КШМ являются парами трения, что наглядно подтверждает схема кинематики привода автомобиля. Если диагностика данного механизма привода внутреннего сгорания выявила неисправности, необходим капитальный ремонт двигателя, так как производится его полная разборка.

Технические особенности неисправностей КШМ заключаются в износе деталей трения. Основными поломками являются:

  • залегшие кольца на поршнях – из-за высокой выработки металла появляется люфт, возникает перекос и поршень заклинивается внутри цилиндра;
  • износ пальцев поршневых – вместо фиксированного размера между коленвалом/поршнем расстояние получается плавающим, изменяются характеристики крутящего момента;
  • выработка поршневой группы – стачивается зеркало цилиндра или поверхность поршня, меняются характеристики ДВС;
  • износ подшипников – шатунные или коренные вкладыши сточились, возникают ударные нагрузки на вал.

Основными причинами неисправностей становятся длительные нагрузки, отсутствие ТО, низкое качество смазки или выработка ресурса привода.

Поломки КШМ

Залегание колец поршневых

Указанные неисправности кривошипно шатунного механизма диагностируются по признакам:

  • перебои в работе мотора;
  • постоянное уменьшение в картере уровня смазки;
  • отработанные газы принимают синий оттенок.

Поломка не может устраняться в домашних условиях, так как необходима высокая квалификация мастера и полная разборка двигателя.

Износ поршней и пальцев

Эти конкретные неисправности кривошипно шатунного механизма выявляются по следующим признакам:

  • пальцы – независимо от режима работы мотора в верхней части блока цилиндров слышен звонкий стук, пропадающий при выкручивании свечи, увеличивающийся при наборе оборотов валом;
  • поршни – выхлоп синего цвета, аналогичный предыдущему случаю стук, но только на холостых оборотах, после прогрева обычно исчезает.

После диагностики этой неисправности в обязательном порядке требуется капремонт ДВС.

Износ поршней

Износ подшипника шатунного и коренного

Неизбежно потребуется ремонт кривошипно шатунного механизма при выработке ресурса подшипников, о котором свидетельствуют следующие факторы:

  • подшипник шатуна – сигнальная лампа извещает о недостаточном давлении смазки, стук глухой, плавающий, идет из средней части блока цилиндров;
  • подшипник коренной – сигнальная лампа горит, свидетельствуя о низком давлении масла, в нижней части блока цилиндров возникает глухой стук.

По аналогии с предыдущими вариантами без капремонта обойтись не получится.

Способы диагностики КШМ

Вышеуказанные методики выявления причин не являются высокоточными. Служат поводом для поездки на СТО, где может быть произведено квалифицированное диагностирование кривошипно комбинированного механизма мастерами, обладающими необходимым опытом и практикой работ. Они имеют чертеж кинематики с точными размерами, допусками и посадками. Обладают необходимым для этого оборудованием.

Предварительная на определение стуков

Поскольку ремонт кривошипно шатунного механизма относится к дорогостоящим операциям капремонта двигателя, на начальном этапе мастер СТО позиционирует стуки и шумы внутри блока цилиндров. Для этого используется стетоскоп (обычно модификация КИ-1154 производителя Экранас). Технология исследований выглядит следующим образом:

  • рабочая поверхность стетоскопа прислоняется к стенкам БЦ на разных уровнях (в рабочей зоне подшипников шатунных и кривошипных);
  • двигатель прогревается до температуры ОЖ 75 – 80 градусов;
  • обороты увеличиваются вначале плавно, затем режим работ изменяется резко;
  • стуки прослушиваются лишь при возникновении зазора больше 0,1 – 0,2 мм.

Характер стука заметен исключительно профессионалу:

  • поршни о цилиндр издают звуки щелкающие, на холодном двигателе;
  • звонкий звук металл о металл при резком увеличении оборотов издает поршневой палец, реже при неправильно выставленном (опережение) угле зажигания;
  • коренные подшипники звучат в низкой тональности;
  • звук подшипников шатунных немного резче.

Внимание: Данная методика диагностики так же не является окончательной. Позволяет мастеру выявить наличие имеющихся дефектов с гарантией, что разбирать ДВС все же необходимо для замены расходных элементов.

Измерение суммарных зазоров в сопряжениях

Обычно техническое обслуживание кривошипно шатунного механизма осуществляется с помощью установки КИ-11140 для определения зазора в КШМ.

При этом не нужно снимать поддон картера и запускать мотор. Измеряются зазоры в головках шатуна суммарно:

Суммарные зазоры измеряют минимум три раза, выводят среднее значение, сравнивают с допустимой нормой эксплуатации из таблиц.

Определение объема газа, прорывающегося в картер

Не пригодна к эксплуатации существующая сборка кривошипно шатунного механизма авто, если проверка прорывающихся газов выявила большее его количество в картере. Измерения производятся прибором КИ-4887-И следующим способом:

При значительном износе ДВС расход может превышать 120 л/мин, требуются дополнительные регулировки расходомера. После отсоединения системы вентилирования картера все дополнительные отверстия необходимо закрыть заглушками/пробками.

Схема подключения газового расходомера КИ-4887-11

Измерение давления масла

Эксплуатируемая сборка кривошипно шатунного механизма считается пригодной к использованию, если проверка давления масла удовлетворяет норме. Измерения проводятся прибором КИ-5472, состоящим из рукава и манометра:

  • штатный манометр скручивается с маслофильтра;
  • на его место крепится прибор;
  • двигатель прогревается до 70 – 80 градусов;
  • фиксируется значение магистрального давления при оборотах холостого хода.

Предельно простое общее устройство системы смазки и прибора КИ позволяет снизить время диагностики.

Для ДВС карбюраторного типа считается нормальной компрессия в пределах 0,7 МПа. Поэтому в некоторых случаях диагност СТО измеряет компрессию прогретого двигателя. При этом разница показаний цилиндров не может превышать 0,1 МПа.

Технология ремонта

Основное назначение капремонта КШМ – восстановление ресурса поршневой группы и коленчатого вала. Для этого реставрируются посадочные места, заменяются пальцы, вкладыши.

Ремонт КШМ

Поршни и пальцы

Поршень, условно входящий в кривошипно шатунный механизм двигателя авто, изготавливается из алюминиевых сплавов. Палец создан из легированной стали, изнашивается меньше.

У поршней восстанавливается зеркало, геометрия канавок для колец и бобышек, внутри которых находится палец. Размеры поршневого пальца подбираются при температуре воздуха в мастерской 20 градусов в зависимости от размерной группы поршня.

Ремонт шатунов

В основном изготавливают шатуны из стали 40Г, 40Х или ст45, характерными дефектами считаются:

  • выработка металла посадочных мест;
  • износ отверстий;
  • изменение геометрии (скручивание и изгиб).

Выбраковывают кинематический элемент механизма при аварийном изгибе, поломке и раскрытии трещин. В остальных случаях изгибы и скручивание устраняют при нагреве до 500 градусов для снятия внутренних напряжений. Посадочные поверхности фрезеруются, затем шлифуются до следующего ремразмера.

После чего, работа кривошипно шатунного механизма вновь удовлетворяет требованиям регламента ГОСТ. Запрещено удалять слой металла больше 0,2 – 0,4 мм для дизелей, карбюраторных ДВС, соответственно. В противном случае нарушается кинематическая схема узла.

Шатуны

Реставрация коленвала

Основными нюансами ремонта коленчатого вала являются:

  • деталь изготавливается из магниевого чугуна высокопрочного, сталей ДР-У, 50Т, 40Х или ст45;
  • основными дефектами становятся изгиб и выработка стали посадочных мест;
  • реже изнашиваются шпоночные канавки, повреждаются резьбы, раскрываются трещины;
  • ремонтопригодной считается сборка кривошипно шатунного механизма с выработкой посадочных поверхностей и поврежденными резьбами;
  • трещины более 3 мм приводят к отбраковке коленвала.

После промывки масляных каналов и наружных поверхностей изделие исследуется дефектоскопом. Выработку восстанавливают наплавлением Св-18ХГСА проволоки с проточкой под ремонтные параметры. Шпоночные канавки фрезеруют с заданной чистотой обработки. При этом должна соблюдаться схема установки шестеренок.

После шлифовки коленвал балансируют на динамической установке БМ-У4 либо КИ-4274.

Таким образом, кривошипно шатунный механизм КШМ проще и дешевле поддерживать в работоспособном состоянии. Для этого нужно своевременно проходить ТО и обращаться в сервис к специалистам при малейшем постороннем звуке в блоке цилиндров. В этом случае, даже капремонт обойдется дешевле.

Для начала, надо ознакомиться с устройством двига­теля, системами питания, смазки, охлаждения и зажигания карбюраторных двигателей. Изучить сопряжения и де­тали, оказывающие влияние на рабочие параметры дви­гателя. Научиться определять структурные параметры кривошипно-шатунного, газораспределительного меха­низмов и систем двигателя различного технического со­стояния. Изучить способы регулировки сопряжений дви­гателя и его систем. Научиться определять места и спо­собы присоединения диагностических средств к двига­телю и его системам. Иметь представление о характе­ре изменения структурных параметров двигателя.

Диагностика двигателя современного автомобиля состоит из следующих этапов:

  1. Диагностика КШМ двигателя автомобиля;
  2. Диагностика ГРМ двигателя автомобиля;
  3. Диагностика цилиндро поршневой группы двигателя;
  4. Диагностика топливной системы автомобиля;
  5. Диагностика карбюратора автомобиля;
  6. Диагностика системы питания двигателя автомобиля;
  7. Диагностика системы охлаждения двигателя;
  8. Диагностика системы смазки двигателя;
  9. Диагностика системы зажигания двигателя.

Техническое состояние двигателя, самого сложного и важного агрегата, оказывает наиболее существенное влияние на эксплуатационные качества автомобиля — производительность, экономичность, скорость движения, готовность к движению, содержание вредных веществ в отработавших газах.












Диагностирование составных частей двигателей

Перепад давления Δh устанавливают по манометру 1 одинаковым для всех замеров при помощи крана 5. По шкале прибора определяют количество газов, прорывающихся в картер, и сравнивают его с номинальным (л/мин):

ЗМЗ-51-11 22…25 (110)

ЗИЛ-130 22…28 (120)

* В скобках приведены предельные значения

Мощность и экономичность двигателя зависят от компрессии в цилиндрах. Компрессия снижается при значительном износе или поломке деталей цилиндропоршневой группы. Перед измерением компрессии промывают воздушный фильтр, контролируют фазы газораспределения и регулируют тепловые зазоры клапанов.

Перед проверкой компрессии в цилиндрах карбюраторного двигателя его прогревают до нормального теплового режима, останавливают, полностью открывают дроссельную и воздушную заслонки карбюратора, отсоединяют провода от свечей зажигания, очищают и продувают сжатым воздухом углубления для свечей в головках цилиндров и выворачивают все свечи зажигания.

Компрессию оценивают по давлению в камерах сгорания двигателя при такте сжатия и замеряют компрессометрами моделей 179 (для карбюраторных двигателей) или КН 1125 (для дизельных двигателей).

Перед проверкой компрессии в цилиндрах дизельного двигателя его прогревают до нормального теплового режима, отсоединяют топливопровод высокого давления от форсунки проверяемого цилиндра и надевают на конец топливопровода шланг для отвода топлива в специальный сосуд, снимают форсунку и вставляют в отверстие для нее наконечник компрессометра. Компрессию замеряют при частоте вращения коленчатого вала 450…550 мин~’.

Техническое состояние цилиндропоршневой группы также определяют по утечке воздуха, замеряемой прибором К-69М:

Если значение утечки воздуха при положении поршня в в. м, т. больше предельного, следует проверить стетоскопом утечку воздуха через клапаны и убедиться в отсутствии утечки воздуха через прокладку головки цилиндров двигателя. Если при смачивании прокладки головки цилиндров мыльной водой на ней или в наливной горловине радиатора появляются пузырьки воздуха, это свидетельствует о слабой затяжке гаек головки цилиндров или о начале разрушения прокладки. Возможно наличие трещины в блоке цилиндров или камере сгорания.

При отсутствии указанных дефектов и больших значениях утечки воздуха при положении поршня в в.м.т. следует продолжить! замеры при положении поршня в н.м. т. Результаты замеров следует сравнить с предельными значениями. Если показания прибора нестабильны, а утечки воздуха велики, это свидетельствует о неисправностях механизма газораспределения.

Стуки двигателя прослушивают при помощи стержневого (рис. 6.18, а) или трубчатого (рис. 6.18, б) стетоскопов, прикасаясь концом стержня 2 или 4 к зонам прослушивания на двигателе.


Состояние коренных подшипников коленчатого вала определяют, прослушивая нижнюю часть блока цилиндров при резком открытии и закрытии дроссельной заслонки. Изношенные коренные подшипники издают сильный глухой стук низкого тона, усиливающийся при резком увеличении частоты вращения коленчатого вала.

Состояние шатунных подшипников коленчатого вала определяют аналогично. Изношенные шатунные подшипники издают стук среднего тона, по характеру схожий со стуком коренных подшипников, но менее сильный и более звонкий, исчезающий при выключении свечи зажигания или форсунки прослушиваемого цилиндра.

Работу сопряжения поршень — гильза цилиндра прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю. Появление звука, напоминающего Дрожащий звук колокола, усиливающегося с увеличением нагрузки на двигатель и уменьшающегося по мере прогрева двигателя, Указывает на возможное увеличение зазора между поршнем и гильзой цилиндра, изгиб шатуна, перекос оси шатунной шейки или поршневого пальца, особенно, если у двигателя наблюдается повышенный расход топлива и масла. Скрипы и шорохи в сопряжении поршень — гильза цилиндра свидетельствуют о начинающемся заедании в этом сопряжении, вызванном малым зазором или Недостаточным смазыванием.

Состояние сопряжения поршневой палец — втулка верхней головки шатуна проверяют, прослушивая верхнюю часть блока цилиндров при малой частоте вращения коленчатого вала с резким переходом на среднюю. Резкий металлический стук, напоминающий частые удары молотком по наковальне и пропадающий при отключении свечей зажигания или форсунок, указывает на увеличение зазора между поршневым пальцем и втулкой, недостаточное смазывание или чрезмерно большое опережение начала подачи топлива.

Сопряжение поршневое кольцо — канавка поршня проверяют на уровне н. м. т. хода поршня при средней частоте вращения коленчатого вала. Слабый, щелкающий стук высокого тона, похожий на звук от ударов колец одно о другое, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе колец.

Еще одним эффективным методом проверки состояния кривошипно-шатунного механизма является измерение суммарных зазоров в верхней головке шатуна и шатунном подшипнике. Проверку проводят при неработающем двигателе при помощи устройства КИ-11140 (рис. 6.19).

Наконечник 5с трубкой ‘/устройства устанавливают на место снятой свечи зажигания или форсунки проверяемого цилиндра. К основанию 2 через штуцер присоединяют компрессорно-вакуумную установку. Поршень устанавливают за 0,5… 1,0 мм от в.м.т. на такте сжатия, стопорят коленчатый вал от проворачивания и с помощью компрессорно-вакуумной установки попеременно создают в цилиндре давление 200 кПа и разряжение 60 кПа. При этом поршень, поднимаясь и опускаясь, выбирает зазоры, сумма которых фиксируется индикатором 1.

Диагностирование

В зависимости от решаемых задач диагностирование делят на два вида: Д-1 и Д-2. При диагностировании Д-1, выполняемом, как правило, перед первым техосмотром и в процессе его проведения, определяют техническое состояние агрегатов и узлов, обеспечивающих безопасность движения и при­годность автомобиля к эксплуатации. При диагностировании Д-2, выполняемом, как правило, перед вторым техобслуживанием, оценивается техническое состояние агрегатов, узлов, систем автомобиля, уточняются объем работ ТО-2 и потребность в ремонте. Средствами диагностирования служат специальные приборы и стенды, предназначенные для измерения параметров.

Внешние средства диагности­рования не входят в конструкцию автомобиля. К ним относятся стационар­ные стенды, переносные приборы и передвижные станции, укомплектован­ные необходимыми измерительными устройствами. Встроенные средства диагностирования являются составной частью ав­томобиля. Это датчики и приборы на панели приборов. Их используют для непрерывного и достаточно частого измерения параметров технического со­стояния автомобиля. Более сложные средства встроенного диагностирования позволяют водителю постоянно контролировать состояние тормозных сис­тем, расход топлива, токсичность отработавших газов, а также выбирать наиболее экономичные и безопасные режимы работы автомобиля или свое­временно прекращать движение при аварийной ситуации.

Контроль технического состояния двигателя

Диагностирование технического состояния двигателя выполняют для выявления потребности в регулировке или ремонте после определенного пробега автомобиля или в следующих случаях: при снижении мощности; увеличении расхода топлива или смазочного материала; появлении стуков и дымлении; падении давления смазочного материала; неравномерности работы цилиндров. Техническое состояние двигателя в сборе контролируется осмотром и с помощью средства диагностирования.

При осмотре двигателя можно обна­ружить подтекание смазочного материала, топлива, охлаждающей жидкости, а также явные дефекты и определить необходимость ТО или ремонта двигателя перед диагностированием. Кроме того, снимают показания контрольных приборов, имеющихся на щитке приборов перед водителем. При оценке технического состояния двигателя с помощью средств диагностирования измеряют его мощность, которая зависит от большого числа факторов, износа деталей цилиндров поршневой группы и клапанов, угла опережения зажигания или впрыскивания, мощности искры, расхода топлива через жиклеры или форсунки и т.п. В случае, когда мощность отличается от нормативной, проводят поэлементное диагностирование систем и механизмов двигателя.

Техническое состояние кривошипно-шатунного механизма оценивают по виброударным импульсам в характерных точках двигателя (виброакустический метод); давлению в цилиндрах двигателя в конце такте сжатия (компрессия); объему газов, впрыскивающихсяв картер; негерметичности цилиндров и клапанов; суммарному зазору в верхней головке шатуна и шатунном подшипнике. Виброакустический метод оценки технического состояния двигателя основан на регистрации амплитуд колебательных процессов, возникающих при работе механизма двигателя. Для использования виброакустического метода диагностики необходимо использовать акустические или вибрационные преобразователи, которые закрепляются в различных точках двигателя.

Перед диагностированием двигатель прогревают до температуры охла­ждающей жидкости 85…95°C и прослушивают, прикасаясь острием наконечника-щупа к проверяемым участкам. Работу сопряжения поршень – цилиндр прослушивают по всей высоте цилиндра при малой частоте вращения коленчатого вала с переходом на среднюю. При стуке сильного глухого тона, усиливающегося с увеличением нагрузки, возможны увеличенный зазор между поршнем и цилиндром, изгиб шатуна, перекос оси шатунной шейки или поршневого пальца. Состояние сопряжения поршневое кольцо-канавка поршня проверяют на уровне нижней мертвой точки (НМТ) хода поршня у всех цилиндров на средней частоте вращения коленчатого вала.

Слабый стук высокого тона, похожий на звук при соударении колец, свидетельствует об увеличенном зазоре между кольцами и поршневой канавкой либо об изломе кольца. Сопряжение поршневой палец – втулка верхней головки шатуна проверяют на уровне верхней мертвой точки при малой частоте вращения ко­ленчатого вала с резким переходом на среднюю. Сильный звук высокого тона, похожий на частые удары молотком по наковальне, свидетельствуют об ослаблении сопряжения, плохом смазывании, чрезмерно большом опережении начала подачи топлива или раннем зажигании. Работу сопряжения коленчатый вал – шатунный подшипник прослушивают в зоне от ВМТ до НМТ сначала при малой, а затем при средней частоте вращения коленчатого вала. Глухой звук среднего тона свидетельствует об износе или проворачивании вкладыша; звонкий, сильный, металлический звук – об износе или подплавлении шатунного подшипника.

Аналогично регулируют зазор в клапанах других цилиндров, поворачивая коленчатый вал на пол-оборота в соответствии с порядком работы цилиндров двигателя автомобиля.

Устранение детонации в двигателе.

Детонация – это быстрое завершение процесса сгорания в цилиндрах двигателя в результате многостадийного самовоспламенения части рабочей смеси перед фронтом пламени, приводящее к появлению ударных волн, которые стимулируют сгорание всей оставшейся смеси со сверхзвуковой скоростью. Рассмотрим несколько подробнее это явление. Из существующих теорий, объясняющих сущность детонации, наиболее признанной является пероксидная, согласно которой установлено, что при окислении углеводородов бензина кислородом воздуха первичными продуктами являются пероксидные соединения. Перекиси относятся к разряду весьма нестойких веществ, обладающих большой избыточной энергией.

При определенных температурах и давлении перекиси могут самопроизвольно разлагаться с выделением большого количества тепла и образованием новых активных веществ. Известно, что скорость окисления углеводородов зависит от температуры бензина и значительно возрастает с ее увеличением. Поэтому про­цессы окисления бензина приобретают особенно большую скорость после воспламенения горючей смеси в цилиндрах и образования фронта пламени. Быстрое нарастание температуры и давления в камере сгорания цилиндров двигателя способствует дальнейшей интенсификации процессов окисления в несгоревшей части рабочей смеси. Высокие температуры и давление действуют наиболее длительно на оставшиеся порции несгоревшего топлива, находящегося перед фронтом пламени. Вследствие этого в них особенно интенсивно накапливаются перекиси. Поэтому наиболее благоприятные условия для перехода нормального сгорания в цилиндрах в детонационное создаются при сгорании именно последних порций рабочей смеси. Следует отметить, что процессы окисления углеводородов бензина с образованием перекисей происходят в двигателе всегда независимо от того, какое сгорание имеет место: нормальное или детонационное.

В автомобильных двигателях внутреннего сгорания поршневого типа происходят сложные процессы преобразования химической энергии топлива в тепловую энергию, а тепловой энергии в механическую. При этом механическая энергия с помощью кривошипно-шатунного механизма (КШМ) из возвратно-поступательного движения поршня преобразуется во вращательное движение коленчатого вала. В работе двигателя участвуют синхронно действующие многие механизмы и системы, но главным является кривошипно-шатунный механизм (КШМ). Этот механизм определяет основные эксплуатационные качества двигателя и необходимость ремонтных воздействий, которые наиболее трудоемки.

Изменение технического состояния КШМ – цилиндров, поршневых колец, поршней, шеек и подшипников коленчатого вала – зависит от многих факторов эксплуатационного порядка (нагрузка, температурный режим, периодичность и качество технического обслуживания, качество масел, топлива, квалификация водителя, режим прогрева и т.д.). Во время проверки кривошипно-шатунного механизма уделите больше внимание диагностике коленчатого вала, так как эта деталь достаточно дорогостоящая.

Непосредственное влияние на эксплуатационные качества автомобиля – мощность двигателя, расход топлива и масла, пусковые качества, состав отработавших газов – оказывает износ цилиндров, поршней и поршневых колец. Состояние этих же деталей чаще всего определяет и необходимость ремонта двигателя.

Сопряжение коленчатого вала не оказывают влияния на эксплуатационные качества двигателя, но определяют необходимость ремонта, если износ их достигает предельной величины, и появляются опасные стуки, при которых дальнейшая работа двигателя невозможна.

Диагностика ГРМ двигателя (газораспределительного механизма)

Значительное влияние на эксплуатационные качества двигателя оказывают неисправности клапанов газораспределительного механизма и в первую очередь герметичность прилегания клапана к седлу в блоке цилиндров или головке блока. Нарушение герметичности клапанов возможно в результате выработки рабочей фаски головки клапана или седла, подгорания фаски, перекоса головки клапана из-за износа направляющей втулки клапана или деформации стержня клапана, а также в результате уменьшения теплового зазора между толкающим элементом и стержнем клапана. Увеличение этого зазора на герметичность посадки клапана не влияет, но вызывает сильные стуки и повышенный износ рабочих фасок клапана и седла. Бывают случаи, когда клапан не садится в седло из-за поломки пружины, обильного нагарообразования, задиров в направляющей втулке, перегрева и попадания под клапан посторонних твердых частиц.

Величины номинальных и предельных значений структурных параметров двигателей отечественного производства приведены в таблице.

Величины номинальных параметров установлены довольно точно и выдерживаются заводами-изготовителями. Величины предельных параметров имеют значительные отклонения от рекомендованных как в сторону уменьшения, так и в сторону увеличения их значений.

Это объясняется трудностями определения структурных параметров в эксплуатационных условиях без разборки сопряжений, а также различным подходом к эксплуатации машин с учетом сезонности, экономической стороны, возможности выполнить ремонт в момент, когда параметры двигателя достигли своего предельного значения и механизм полностью выработал свой ресурс.

Для определения структурных параметров с достаточной для практики точностью в эксплуатационных условиях применяют способы и приборы, измеряющие диагностические параметры, которые связаны с величиной структурных параметров.С помощью современной диагностики двигателя можно с легкостью определить появившиеся неисправности.

Например, диагностический параметр – пропуск газов в картер двигателя связан количественными зависимостями с износом цилиндро-поршневой группы, которая влияет на мощность двигателя, на расход масла и топлива и на другие качества двигателя. С помощью акустического сигнала определяется величина зазоров в газораспределительном механизме и кривошипно-шатунном механизме. Давление масла в магистрали связано с зазорами в сопряжениях шейки коленчатого вала – подшипники.

Читайте также: