Что такое лямбда в гидравлике

Обновлено: 04.07.2024

В зависимости от соотношения абсолютной высоты выступов шероховатости Δ и толщины вязкого подслоя δ по-разному проявляется влияние вязкостного трения и сил инерции на касательные напряжения и потери энергии в потоке. Толщина вязкого подслоя определяется

Это значение δ следует сравнить с высотой выступов шероховатости. Так как фактическая высота всех выступов не является одинаковой, то вводится понятие эквивалентной шероховатости Δэкв, т.е. такой равномерной шероховатости, которая дает при подсчете одинаковую с заданной шероховатостью величину гидравлического коэффициента трения λ. (Некоторые значения эквивалентной шеро­ховатости приведены в табл. 111.1).

Таблица – Значения эквивалентной шероховатости

Трубы Δэкв, мм
Стальные цельнотянутые новые 0,02—0,05
То же, неновые (бывшие в эксплуатации) 0,15—0,3
Стальные сварные новые 0,04—0,1
Чугунные новые 0,25—1
Чугунные и стальные сварные неновые 0,8—1,5
Асбестоцементные новые 0,05-0,1
То же, неновые 0,6
Бетонные и железобетонные 0,3—0,8

Схематично можно рассматривать следующие три области гид­равлических сопротивлений

1. Область гидравлически гладких труб: выступы шероховатости покрыты вязким подслоем (Δэкв ‹ δ) и не нарушают целостности последнего. Выступы обтекаются без отрывов и вихреобразований. В этом случае шероховатость не влияет на гидравлические сопротивления и гидравлический коэффициент трения, который зависит только от числа Рейнольдса. По данным А. Д. Альтшуля, эта область существует при 500 имеет место область гидравлически шероховатых труб: выступы шероховатости выходят за пределы вязкого подслоя (Δэкв>δ). Отрывное обтекание выступов сводит сопротивление трения к сопротивлению обтекания тел с резким изменением конфигурации, которое не зависит от числа Рейнольдса и пропорционально скоростному напору потока и размерам выступов шероховатости. Именно эти факторы связаны с инерционными сопротивлениями перемешивающихся частиц жидкости.


В переходной области сопротивлений гидравлический коэффициент трения может быть определен по формуле А. Д. Альтшуля

3. При 10 1,2 м/с — в области гидравлически шероховатых труб. Ф. А. Шевелевым составлены таблицы по определению потерь напора в водопроводных трубах на основании эмпирических формул.

Для расчета движения сточных вод в водоотводных (канализационных) напорных и безнапорных трубах применяется формула Н. Ф. Федорова

D = 4R – гидравлический диаметр;

?2 и a2 – эквивалентная абсолютная шероховатость и безразмерный коэффициент, опреде­ляемые по таблице;

Re – число Рейнольдса, при опре­делении которого кинематическая вязкость сточных вод принима­ется в зависимости от количества взвешенных частиц в них на 5-30% больше, чем вязкость чистой воды.

Таб Коэффициенты ?2 и a2 для формулы Н. Ф. Федорова

Трубы ?2 a2
Асбестоцементные 0,6
Керамические 1.35
Бетонные и железобетонные

Значения гидравлического коэффициента трения для сточных вод получаются большими, чем при движении чистой воды в водо­проводных трубах. Н. Ф. Федоровым составлены на основании формулы таблицы пропускной способности и скорости протекания жидкости в водоотводных трубах.

Формула 14. Скорость движения воды


Потери напора на участке трубопровода определяются по формуле:

Формула 15. Потери напора на участке


Где λ- коэффициент гидравлического сопротивления.

Коэффициент гидравлического сопротивления может быть определен по формуле Колбрука- Уайта:

Формула 16. Формуле Колбрука-Уайта


Либо по экспериментальным данным по формуле Прандтля- Никурадзе

Формула 17. Формула Прандтля-Никурадзе


Где c=2.0, a=3.7, b=1.14

Или по формуле Б.Л. Шифринсона

Формула 18. Формула Шифринсона


Или по формуле А.Д. Альтшуля

Формула 19. Формула Альтшуля


Потери напора на потребителях определяется по формуле

Формула 20. Потери напора на потребителе


где: Sпот- сопротивление потребителя, м/(т/час)2

Для элеваторного присоединения системы отопления находится как сумма сопротивления трубопроводов СО и сопротивления сопла элеватора:

Формула 21. Потери напора на потребителе


где Gс - расчетный расход сетевой воды (из тепловой сети) на систему отопления, т/ч.

ΔHсо - потери напора в системе отопления (после элеватора) при расчетном расходе воды, м, (как правило 1-2 м.вод.ст.);

Сопротивление элеваторного узла определяется по формуле:

Формула 22. Сопротивление элеваторного узла


Для независимой схемы присоединения системы отопления, сопротивление трубного пространства теплообменного аппарата определяется по формуле:

Формула 23. Сопротивление СО при незав. схеме


ΔHто.со.- испытательные (расчетные) потери напора в трубном пространстве теплообменников СО, м;испытательные (расчетные) потери напора в трубном пространстве теплообменников СО, м;

Gто.со.- испытательный (расчетный) расход теплоносителя в трубном пространстве тепло-обменников СО, т/час.

Сопротивление теплообменников ГВС определяются по аналогичной формуле

Сопротивление системы вентиляции определяется по формуле:

Формула 24. Сопротивление системы вентиляции


ΔHсв.-расчетные потери напора в системе вентиляции, м;

Gсв.- расчетный расход воды в системе вентиляции (СВ), т/ч.

Суммарное сопротивление потребителя вычисляется в зависимости от типа схемного решения по правилу определения сопротивления последовательно (параллельно) соединенных элементов.

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.


Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.


Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:


Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re 4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:


При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).


Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:


Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:


В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:


Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:


Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:


Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2 ) = ((4·0,022) / (3,14·[0,024] 2 )) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

HТ = (λ·l) / (d·[w 2 /(2·g)]) = (0,028·32) / (0,024·[48,66] 2 ) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

Потери напора на местные сопротивления определяется как разность:

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

Полученное значение потери напора носителя на трение составят:

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3 ):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3 ) = 200000

Согласно рассчитанному значению Re, причем 2320 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (Hоб·d) / (λ·[w 2 /(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ:требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал - сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м 3 /час и Q2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q1 = 18 м 3 /час возможные диаметры составят:

d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м 3 /час:

d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6 ) = 216422

Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.


Лекции


Лабораторные


Справочники


Эссе


Вопросы


Стандарты


Программы


Дипломные


Курсовые


Помогалки


Графические

Доступные файлы (1):

^ Буквенные обозначения с указателем

 - плотность, кг/м 3 (с. 8, 40, 62).

m - масса, кг (с. 8).

V0 - объём, м 3 (с. 8, 17).

 - удельный вес, Н/м 3 (с. 8, 41, 56).

G - вес (сила тяжести), Н (с. 8, 14).

g - ускорение свободного падения, м/с 2 (с. 8, 62).

 - вязкость динамическая, ^ Па·с (с. 9, 41, 56).

 - вязкость кинематическая, м 2 (с. 9, 41, 62).

Fп - подъёмная (архимедова) сила, Н (с. 14).

h - глубина (высота), м (с. 10).

p - давление полное (гидростатическое), Па (с. 10).

p0 - давление внешнее, Па (с. 10).

pж - давление веса столба жидкости, Па (с. 10).

pатм - давление атмосферное, Па (с. 10, 62).

pизб - давление избыточное, Па (с. 10).

pман - давление манометрическое, Па (с. 10).

H - напор гидростатический , м (с. 15).

H - напор гидродинамический , м (с. 19).

z - напор (высота) геометрический, м (с. 15, 19).

hp - напор (высота) пьезометрический, м (с. 15, 19).

hV - напор скоростной, м (с. 19, 21, 22).

 - площадь живого сечения, м 2 (с. 17).

q, Q - расход потока, м 3 (с. 17).

V - скорость потока средняя, м/с (с. 17).

 - смоченный периметр , м (с. 17).

R - гидравлический радиус , м (с. 17).

d - диаметр внутренний, м (с. 26, 31).

Re - число Рéйнольдса (безразмерное) (с. 25, 49).

Reкр - число Рéйнольдса критическое (безразмерное) (с. 25, 49).

H - потери напора (разность напоров), м (с. 21, 26).

hl - потери напора линейные, м (с. 26).

hм - потери напора местные, м (с. 28).

 - коэффициент гидравлического сопротивления (с. 26).

 - коэффициент гидравлического трения (с. 22, 27).

 - абсолютная шероховатость стенок труб, мм (с. 27).

l - длина потока, м (с. 27).

i - уклон гидравлический (безразмерный) (с. 27, 30).

iгеом - уклон геометрический (безразмерный) (с. 30, 31).

Vзв - скорость звука, м/с (с. 28).

0 - коэффициент расхода (безразмерный) (с. 29).

C - коэффициент Шезú (с. 31).

n - коэффициент шероховатости (безразмерный) (с. 31).

Vф - скорость фильтрации, м/сут (с. 34, 35, 56).

kф - коэффициент фильтрации, м/сут (с. 35).

Hе - напор (естественная мощность) грунтовых вод, м (с. 36, 38).

Hт - напор воды в траншее, м (с. 36).

Hк - напор воды в котловане, м (с. 38).

Lt - зона влияния откачки, м (с. 36).

Rt - радиус влияния откачки, м (с. 38).

rк - радиус котлована, м (с. 38).

в - коэффициент водоотдачи грунта (безразмерный) (с. 35).

T - температура абсолютная по Кельвину, K (с. 40).

t° - температура по Цельсию, °C (с. 40)

Rг - газовая постоянная для воздуха, Дж/(кг·K) (с. 40, 62).

pст - статическое давление, Па (с. 41, 42).

pпр.ст - приведённое статическое давление, Па (с. 45).

pп - полное давление (движущегося газа), Па (с. 47).

pд - динамическое давление, Па (с. 47).

pпр.п - приведённое полное давление, Па (с. 47).

pпр.п - разность приведённых полных давлений, Па (с. 49).

pпот - потери давления (общие), Па (с. 50).

pl - потери давления линейные, Па (с. 50).

pм - потери давления местные, Па (с. 50).

dэ - диаметр эквивалентный, м (с. 46).

pе - естественная тяга, Па (с. 51)

pе - естественное давление, Па (с. 53).

pветр - давление ветровое, Па (с. 54).

kв - коэффициент ветрового давления (безразмерный) (с. 54).

Cаэр - коэффициент аэродинамический (безразмерный) (с. 54, 55).

k0 - проницаемость, м 2 (с. 56).

Ru - сопротивление воздухопроницаемости, м 2 ·ч·Па/кг (с. 56).

Справочные данные

^ Некоторые практические константы

Ускорение свободного падения g = 9,80665  10 м/с 2 .

Нормальное атмосферное давление pатм = 101325 Па  100000 Па.

Газовая постоянная для воздуха Rг = 287 Дж/(кг·K).

Читайте также: