Рабочие параметры лямбда зонда

Обновлено: 07.07.2024

Идеального смесеобразования не бывает — состав смеси в цилиндрах в каких-то пределах колеблется. Представим, что в момент времени А, когда сигнал датчика кислорода находится в пределах 0,35–0,4 В, блок управления двигателем оценил смесь как бедную (см. рис. 1). С этого момента он постепенно увеличивает время открытого состояния форсунок — смесь обогащается, напряжение с датчика растет. Но состав смеси мгновенно измениться не может — напряжение сначала понижается примерно до 0,2 В, чему соответствует момент времени Б. Затем смесь продолжает обогащаться, пока в точке В (0,55–0,6 В) контроллер, оценив смесь как богатую, не начнет постепенно уменьшать время открытого состояния форсунок. Смесь обеднится, пока напряжение вновь не достигнет значения 0,35–0,4 В в точке Д. Но до этого сигнал с датчика кислорода успеет подняться до 0,8 В (точка Г). После ситуации Д цикл вновь повторится. Теоретический размах колебаний напряжения — от 0 до 1 В, реальный — примерно 0,2–0,8 В. У поработавшего датчика считают допустимым 0,3–0,7 В.

Важную роль играют еще два фактора — время реакции датчика на изменение состава смеси и форма его сигнала. Последний в идеале должен выглядеть на экране осциллографа, как показано на рис. 1: сигнал почти синусоидальный. В этом случае средний состав смеси стехиометрический (l = 1), а его отклонения, как вы уже поняли, не превышают ±1%.

Как часты подобные неисправности? Увы, они составляют около 20% всех отказов — нередко их симптомы довольно запутаны, что требует индивидуального подхода.

А теперь — о скорости реакции датчика на изменение состава отработавших газов. Она, конечно, зависит от места расположения датчика в выпускном тракте. Но существенное влияние на быстроту реакции оказывает старение измерительного элемента, а также отложения на нем или в окнах защитного колпачка продуктов сгорания, особенно масла.

Чтобы уточнить время реакции датчика, прогреем двигатель и, подключив к датчику мотор-тестер, проследим за показаниями при резком открытии дросселя (рис. 4). Если отставание велико (больше 0,2 с), стоит проверить состав отработавших газов четырехкомпонентным газоанализатором (только он позволит объективно об этом судить, обнаружить возможный подсос воздуха и т.п.). О работоспособности датчика говорит стабильный, близкий к стехиометрическому состав смеси как на холостом ходу, так и при 3000 об/мин. Как ранее говорилось, допустимые отклонения l — не более ±1%. Даже если форма сигнала правильная, синусоидальная, но состав меняется сильнее — значит, датчик неисправен.

Кислородный датчик – устройство, предназначенное для фиксирования количества оставшегося кислорода в отработавших газах двигателя автомобиля. Он расположен в выпускной системе вблизи катализатора. На основе данных, полученных кислородником, электронный блок управления двигателем (ЭБУ) корректирует расчет оптимальной пропорции топливовоздушной смеси. Коэффициент избытка воздуха в ее составе обозначается в автомобилестроении греческой буквой лямбда (λ), благодаря чему датчик получил второе название – лямбда-зонд.

Коэффициент избытка воздуха λ

Прежде чем разбирать конструкцию датчика кислорода и принцип его работы, необходимо определиться с таким важным параметром, как коэффициент избытка воздуха топливовоздушной смеси: что это такое, на что влияет и зачем его измеряет датчик.

В теории работы ДВС существует такое понятие как стехиометрическое отношение – это идеальная пропорция воздуха и топлива, при которой происходит полное сгорание топлива в камере сгорания цилиндра двигателя. Это очень важный параметр, на основании которого рассчитывается топливоподача и режимы работы двигателя. Оно равняется 14,7 кг воздуха к 1 кг топлива (14,7:1). Естественно, такое количество топливовоздушной смеси не поступает в цилиндр в один момент времени, это всего лишь пропорция, которая пересчитывается под реальные условия.

grafik lambda

Коэффициент избытка воздуха (λ) – это отношение действительного количества воздуха, поступившего в двигатель, к теоретически необходимому (стехиометрическому) для полного сгорания топлива. Говоря простым языком, это “на сколько больше (меньше) воздуха поступило в цилиндр, чем должно было бы”.

В зависимости от значения λ различают три вида топливовоздушной смеси:

  • λ = 1 – стехиометрическая смесь;
  • λ 1 – “бедная” смесь (избыток – воздух; недостаток – топливо).

Современные двигатели могут работать на всех трех типах смеси, в зависимости от текущих задач (экономия топлива, интенсивное ускорение, снижение концентрации вредных веществ в отработавших газах). С точки зрения оптимальных значений мощности двигателя, коэффициент лямбда должен иметь значение около 0,9 (“богатая” смесь), минимальный расход топлива будет соответствовать стехиометрической смеси (λ = 1). Наилучшие результаты по очистке отработавших газов будут также наблюдаться при λ = 1, поскольку эффективная работа каталитического нейтрализатора происходит при стехиометрическом составе топливовоздушной смеси.

Назначение датчиков кислорода

Где установлен кислородник

Стандартно в современных автомобилях используется два датчика кислорода (для рядного двигателя). Один перед катализатором (верхний лямбда-зонд), а второй после него (нижний лямбда-зонд). Различий в конструкции верхнего и нижнего датчиков нет, они могут быть одинаковыми, но выполняют разные функции.

Верхний или передний кислородный датчик определяет содержание оставшегося кислорода в отработавших газах. По сигналу с данного датчика блок управления двигателем “понимает”, на каком типе топливовоздушной смеси работает двигатель (стехиометрической, богатой или бедной). В зависимости от показаний кислородника и требуемого режима работы, ЭБУ корректирует количество топлива, подаваемого в цилиндры. Как правило, топливоподача корректируется в сторону стехиометрической смеси. Следует отметить, что при прогреве двигателя сигналы с датчика игнорируются ЭБУ двигателя до достижения им рабочей температуры. Нижний или задний лямбда-зонд используется для дополнительной корректировки состава смеси и контроля исправности работы каталитического нейтрализатора.

Конструкция и принцип работы кислородного датчика

kislorodnyi datchik ustroistvo

Существует несколько видов лямбда-зондов, применяемых на современных автомобилях. Рассмотрим конструкцию и принцип работы наиболее популярного из них – датчика кислорода на основе диоксида циркония (ZrO2). Датчик состоит из следующих основных элементов:

  • Наружный электрод – осуществляет контакт с выхлопными газами.
  • Внутренний электрод – контактирует с атмосферой.
  • Нагревательный элемент – используется для подогрева кислородного датчика и более быстрого вывода его на рабочую температуру (около 300 °C).
  • Твердый электролит – расположен между двумя электродами (диоксид циркония).
  • Корпус.
  • Защитный кожух наконечника – имеет специальные отверстия (перфорацию) для проникновения отработавших газов.

Внешний и внутренний электроды покрыты платиновым напылением. Принцип работы такого лямбда зонда основан на возникновении разности потенциалов между слоями платины (электроды), которые чувствительны к кислороду. Она возникает при нагревании электролита, когда через него происходит движение ионов кислорода от атмосферного воздуха и выхлопных газов. Напряжение, возникающее на электродах датчика, зависит от концентрации кислорода в отработавших газах. Чем она выше, тем ниже напряжение. Диапазон напряжений сигнала кислородного датчика находится в пределах от 100 до 900 мВ. Сигнал имеет синусоидальную форму, у которой выделяются три области: от 100 до 450 мВ – бедная смесь, от 450 до 900 мВ – богатая смесь, значение 450 мВ соответствует стехиометрическому составу топливовоздушной смеси.

Ресурс кислородника и его неисправности

Лямбда-зонд – один из наиболее быстро изнашиваемых датчиков. Это связано с тем, что он постоянно контактирует с отработавшими газами и его ресурс напрямую зависит от качества топлива и исправности двигателя. Например, циркониевый кислородник имеет ресурс порядка 70-130 тысяч километров пробега.

Поскольку работа обоих кислородных датчиков (верхнего и нижнего) контролируется системой бортовой диагностики OBD-II, при выходе из строя любого из них будет зафиксирована соответствующая ошибка, а на панели приборов загорится контрольная лампа неисправности “Check Engine”. Диагностировать неисправность в данном случае можно с помощью специального диагностического сканера. Из бюджетных вариантов стоит обратить внимание на Scan Tool Pro Black Edition.

фото1

Данный сканер корейского производства отличается от аналогов высоким качеством сборки и возможностью диагностики всех узлов и агрегатов автомобиля, а не только двигателя. Также он способен отслеживать показания всех датчиков (в том числе и кислородного) в режиме реального времени. Сканер совместим со всеми популярными диагностическими программами и, зная допустимые по вольтажу значения, можно судить об исправности датчика.

Характеристика кислордника

При исправной работе кислородного датчика характеристика сигнала представляет собой правильную синусоиду, демонстрирующую частоту переключений не менее 8 раз в течение 10 секунд. Если датчик вышел из строя, то форма сигнала будет отличаться от эталонной, либо его отклик на изменение состава смеси существенно замедлится.

Основные неисправности кислородного датчика:

  • износ в процессе эксплуатации (“старение” датчика);
  • обрыв электрической цепи нагревательного элемента;
  • загрязнение.

Все эти виды проблем могут быть спровоцированы использованием некачественного топлива, перегревом, добавлением различных присадок, попаданием в зону работы датчика масел и чистящих средств.

Признаки неисправности кислородника:

  • Индикация сигнальной лампы неисправности на приборной панели.
  • Потеря мощности.
  • Слабый отклик на педаль газа.
  • Неровная работа двигателя на холостых оборотах.

Виды лямбда-зондов

Помимо циркониевых используются также титановые и широкополосные датчики кислорода.

  • Титановые. Этот вид кислородников имеет чувствительный элемент из диоксида титана. Рабочая температура такого датчика начинается от 700 °C. Титановые лямбда-зонды не требуют наличия атмосферного воздуха, поскольку принцип их работы основан на изменении выходного напряжения, в зависимости от концентрации кислорода в выхлопе.
  • Широкополосный лямбда-зонд представляет собой усовершенствованную модель. Он состоит из цикрониевого датчика и закачивающего элемента. Первый измеряет концентрацию кислорода в отработавших газах, фиксируя напряжение, вызванное разницей потенциалов. Далее происходит сравнение показания с эталонной величиной (450 мВ), и, в случае отклонения, подается ток, провоцирующий закачивание ионов кислорода из выхлопа. Это происходит до тех пор, пока напряжение не станет равным заданному.

Лямбда-зонд является очень важным элементом системы управления двигателем, а его неисправность может привести к сложностям в управлении автомобилем и стать причиной повышенного износа остальных деталей двигателя. А поскольку он не подлежит ремонту, его необходимо сразу заменить на новый.

Многие считают, что лямбда зонд (он же датчик кислорода) является чуть ли не главнейшим датчиком в системе управления двигателем. Но на самом же деле это очередная дань экологии. И не в том смысле, что он напрямую что-то делает полезное для экологии.


Лямбда зонд устанавливается для полноценной работы каталитического нейтрализатора! Дело в том, что катализатор работает с максимальным КПД только тогда, когда смесь близка к стехиометрии, то есть, топливовоздушная смесь состоит из воздуха и топлива в соотношении 14,7 кг воздуха на 1 кг топлива.

Как только это соотношение изменяется в ту или иную сторону, тогда катализатор снижает свою производительность и не в полной мере выполняет свою задачу, что пагубно влияет на экологию.

Поэтому лямбда зонд в первую очередь призван следить за стехиометрическим составом смеси ради полноценной работы катализатора.

К слову сказать, показания лямбда зонда учитываются блоком управления двигателем (ЭБУ) не всегда. Допустим, при разгоне двигателю необходима более обогащенная смесь, поэтому в этот момент ЭБУ не учитывает сигнал с лямбда зонда. Аналогичная картина происходит и при торможении двигателем.

Также стоит отметить, что хоть ЭБУ и не учитывает сигнал в этот момент, но всё равно лямбда зонд вырабатывает сигнал, который мы можем видеть в диагностической программе. И по этому сигналу можно многое сказать о состоянии системы топливоподачи и прочих составляющих работы двигателя. Это мы ниже наглядно рассмотрим на скриншотах.

Итоги



Лямбда-зонд — фото,видео,инстаграм


Также, Вы можете прочитать Как выбрать материал для выхлопной системы?

Как работает лямбда зонд

Тут тоже много заблуждений. Даже Википедия дает не совсем корректную информацию. Вот цитата:”Лямбда-зонд

(
λ-зонд
) — датчик остаточного кислорода. Позволяет оценивать количество оставшегося несгоревшего топлива либо кислорода в выхлопных газах.”

Получилось два предложения, которые противоречат друг другу и ещё больше запутывают начинающих автомобилистов.

Так что он оценивает? Остаточный кислород? Или остаточное несгоревшее топливо?

На самом деле лямбда зонд понятия не имеет сколько там несгоревшего топлива! Потому что он предназначен не для этого. И даже не для определения количества остаточного кислорода в выхлопных газах.

Он всего лишь сравнивает количество кислорода в выхлопных газах с количеством кислорода в окружающей среде в том месте, где находится автомобиль. Ведь мы знаем, что количество кислорода в окружающей среде не везде одинаково.

В общем, на простом языке – Лямбда зонд сравнивает количество кислорода в окружающей среде с количеством кислорода в выхлопных газах! По этой разности можно судить сколько кислорода сгорело в камере сгорания двигателя. Если кислорода в выхлопных газах много, значит смесь была обеднена и в следующем цикле ЭБУ прибавит топлива, чтобы сгорело больше кислорода.

Этот цикл повторяется постоянно и топливовоздушная смесь благодаря этому находится в районе стехиометрии. Именно в РАЙОНЕ стехиометрии – чуть выше, чуть ниже, чуть выше, чуть ниже. На графиках это выглядит как пила


Посредине этой пилы, как раз и есть стехиометрия. Именно по этому сигналу происходит топливная коррекция и выглядит она, естественно, тоже, как пила


Как видим, блок управления двигателем выполняет топливные коррекции строго по сигналу лямбда зонда. Всё как бы в зеркальном отражении – сигнал лямбда зонда вниз (обеднённая смесь), а коррекции сразу вверх (поддать топлива). И так происходит бесконечно, пока необходима смесь, близкая к стехиометрии.

Думаю, должно быть понятно.

Но ещё раз подчеркну, что лямбда зонд не видит топлива, он видит только кислород! Поэтому он и называется датчиком кислорода! Естественно, он никак не может определить несгоревшее топливо. Никак! Он для этого не предназначен.

Почему так важно это понимать?

Первые промежуточные выводы: Лямбда зонд установлен в систему управления двигателем для поддержания топливовоздушной смеси в районе стехиометрии для полноценной работы катализатора и сравнивает содержание кислорода в выхлопных газах с содержанием кислорода в окружающей среде. Исключительно кислорода!

Распиновка лямбда зонда на 4 провода. Схема



Большинство циркониевых лямбда-зондов, которые ставятся на автомобили начиная 1999 года, имеют одинаковые цветовые дифференциации циркониевых датчиков. То же и с лямбда-зондами, выпускаемыми с применением титановых сплавов — распиновка у них соответствует одинаковым значениям, выведенным в таблице. Одна лишь разница — машин с лямбда-зондами на циркониевой основе очень много, титановые — редкость, но все же встречаются. Определение назначения каждого контакта лямбда-зонда можно определить, воспользовавшись специальными таблицами, которые будут представлены ниже.
Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) — значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

Где установлен лямбда зонд

Лямбда зонд устанавливается в системе выпуска отработанных газов перед каталитическим нейтрализатором


Некоторые производители могут устанавливать несколько катализаторов, и, естественно, несколько лямбда зондов.

Лямбда зонды, устанавливаемые перед катализатором называются управляющими, так как по их сигналу происходит управление топливными коррекциями.

Но борьба за экологию не стоит на месте, поэтому автопроизводителей обязали научить блоки управления двигателем следить и диагностировать работу лямбда зонда и катализатора. Поэтому на более поздних автомобилях появились дополнительные лямбда зонды, которые установлены после катализатора. Они получили название, как это не банально звучит, – диагностические.

Но лямбда зонд имеет один недостаток – он работает только разогретым. Поэтому сразу после запуска двигателя этот датчик не участвует в работе системы управления двигателем, а топливо подаётся по таблице, заложенной в память ЭБУ и по накопленным коррекциям, записанным в адаптивную память ЭБУ

После прогрева датчика он начинает вырабатывать сигнал и ЭБУ включает его в работу, переводя систему топливоподачи в замкнутый контур. Она ещё называется топливоподачей с обратной связью по датчику кислорода.


То есть, пока датчик холодный, то стехиометрия не регулируется.

Данный факт оказался неприемлемым в постоянной борьбе за экологию. Поэтому производители были вынуждены установить в лямбда зонд автономный электрический подогрев. Он позволяет в разы уменьшить время прогрева датчика до рабочей температуры.

Работу прогрева мы также можем видеть в диагностической программе


Признаки и причины неисправности датчика

При неисправном лямбда-зонде выхлопные газы становятся более токсичными. Определить это можно при помощи специального диагностического оборудования. При этом никаких внешних признаков не будет, также, как и не будет никакого особенного запаха.


Вырастает расход топлива. Водители, как правило следят за тем, насколько наполнен топливный бак, стараются определить скорость, при которой расход минимален. Повышенный расход будет сразу же заметен. В зависимости от серьезности поломки датчика кислорода, расход вырастет в пределах от 1 л до 4 л.

Перегрев каталитического нейтрализатора. Если лямбда неисправна, то в ЭБУ подается неверный сигнал. Это может приводить к неправильной работе катализатора. Он перегревается вплоть до красного цвета и выходит из строя.

Автомобиль будет дергаться, и водитель сможет услышать хлопки. Лямбда перестает формировать правильные сигналы, в результате – нестабильный ХХ. Обороты могут колебаться в очень широких диапазонах.

Снижаются динамические характеристики. Автомобиль теряет мощность. Эти признаки можно наблюдать в сильно запущенных случаях. Датчик не работает на холодном моторе, а автомобиль всячески сигнализирует о неисправности.

Среди причин поломок можно выделить:

  • Повреждения, вызванные сильными ударами, ДТП, наездами на бордюр;
  • Некорректную работу ДВС и проблемы в работе системы зажигания, когда элемент перегревается и выходит из строя;
  • Засор системы и некачественное топливо. Чем больше в бензине тяжелых металлов, тем быстрее лямбда выйдет из строя;
  • Поршневая группа – часто из-за изношенной ЦПГ в выпускной коллектор попадает масло, а продукты его сгорания забивают зонд;
  • Замыкания в электропроводке;
  • Бедная или слишком богатая смесь;
  • Попадание лишнего воздуха в выхлопную систему;
  • Пропуски зажигания;
  • Топливные присадки.

Как проверить лямбда зонд

Проверить лямбда зонд не так сложно, как кажется, но важно понимать постоянную дилемму автодиагноста – некорректная работа датчика вызвана его неисправностью или он так реагирует на какие-то некорректные процессы в двигателе или в системе управления двигателем?

Другими словами, если сигнал лямбда зонда указывает на обедненную смесь, то необходимо разобраться, может смесь действительно обеднена или может произошла разгерметизация выпускного тракта перед лямбда зондом, о которой я писал выше. То есть, в таких показаниях виноват сам датчик или он показывает реальную картину происходящего. Это самый сложный и самый ответственный этап, потому что именно он определяет путь дальнейших действий.

А бывают ситуации и более сложные, когда проблема не одна. Допустим, и выпускной коллектор подсасывает и топливный насос не дает достаточного давления. И то, и другое будет влиять на показания лямбда зонда.

Поэтому внимание и некоторая фантазия поможет быстро решить проблему и найти виновника.

Многие пытаются проверить лямбда зонд мультиметром. Можно ли его так проверить? Конечно можно, по закону это не запрещено

Вот только полученная информация таким способом мало что нам даст. Да, мы увидим изменяющееся напряжение, по которому можно судить, что датчик работает. А вот как он работает угадать сложно.

Поэтому наиболее лучший и бюджетный вариант проверки – это купить диагностический адаптер для своего автомобиля, который стоит не так уж и дорого. И установить на ноутбук какую-нибудь диагностическую программу.

Лично мой выбор:

  • адаптер для диагностики за несколько долларов
  • бесплатная диагностическая программа для автомобилей Шевроле. Если у Вас другое авто, то можно найти в сети программу и для Вашего авто
  • если никогда с этим не сталкивались, тогда можно посмотреть пошаговую инструкцию по началу диагностики своими руками

Данным способом мы сможем многое сказать не только о состоянии лямбда зонда, но и о многом другом.

Идеальный сигнал лямбда зонда имеет пилообразную форму с нижним значением 0.1 В и с верхним значением 0.9 В, а также с частотой переключения не более 2 секунд


Какие могут быть неисправности у лямбда зонда:

  • слабая амплитуда переключений
  • низкая частота переключений
  • обрыв или полный отказ датчика
  • отсутствие переключений
  • немыслимые значения амплитуды

Если не понятно, то сейчас станет всё понятно.

Как определить частоту переключений? Вот я блеснул творчеством и нарисовал. Сетка на графике имеет размер 2 секунды (зеленый цвет). Два соседних верхних значения показаний лямбда зонда укладываются в этот промежуток (2 секунды). Значит датчик в норме


Я подобрал Вам несколько проблемных графиков для наглядных примеров.

Вот пример уставшего датчика, у которого время переключения составляет почти 10 секунд


Решение проблемы: Замена лямбда зонда

Следующий график показывает неисправный лямбда зонд, у которого вообще нет переключений. Просто прямая линия, которая гуляет то вверх, то вниз. Такое я пару раз наблюдал после того, как обрабатывали разъем лямбда зонда WD-40. Поэтому я всегда советую крепко подумать, прежде чем проводить похожие процедуры. К слову сказать, в большинстве случаев через пару недель датчик приходит в норму и начинает практически корректно работать.


Решение проблемы: Осматриваем разъем датчика на наличие конденсата и прочих нежелательных вещей. Если всё в норме, тогда меняем лямбда зонд.

Следующий случай показывает, как уставший лямбда зонд не выдает необходимую амплитуду 0.1-0.9 В. Вместо этого верхний сигнал датчика составляет примерно 660 мВ


А нижний не опускается ниже 330 мВ


Решение проблемы: Отключаем разъем от датчика. Если видим прямую линию 415 мВ, тогда меняем датчик. Если не видим прямую линию 415 мВ, тогда обращаем внимание на ЭБУ

Вот ещё один очень интересный момент, который мне доводилось видеть неоднократно. Лямбда зонд сходит с ума и вместо положенных 0.9 В выдаёт почти 5 В!

Сам датчик не может выработать такой сигнал. Что же происходит? Ответ прост – сигнальная цепь датчика периодически замыкает на цепь нагрева и подтягивает оттуда напряжение


Как видим, бывает и такое. Причем иногда выявить это довольно сложно, так как замыкание носит кратковременный и непостоянный характер. Приходится по несколько дней ездить с ноутбуком, чтобы поймать этот момент.

Решение проблемы: Проверяем наличие замыкания в проводке. Если всё отлично, тогда меняем лямбда зонд

Вот такие основные неисправности лямбда зондов встречаются чаще всего. Поэтому, если Вы наблюдаете что-то похожее на своих графиках, тогда стоит принимать меры.

Но на этом диагностика лямбда зонда не заканчивается. Вернее не диагностика самого лямбда зонда, а диагностика по лямбда зонду.

Самодиагностика.

11 Crank Angle Sensor No Reference Signal 12 Starter Switch Open/Short Circuit 13 Cam Angle Sensor No Position Pulse 14 Fuel Injector No. 1 Inoperative Fuel Injector 15 Fuel Injector No. 2 Inoperative Fuel Injector 16 Fuel Injector No. 3 Inoperative Fuel Injector 17 Fuel Injector No. 4 Inoperative Fuel Injector 21 Coolant Temperature Sensor Open/Short Circuit 22 Knock Sensor Open/Short Circuit 23 Airflow Meter Circuit Open/Short Circuit 24 Air Control Valve Inoperative Air Control Valve 31 Throttle Position Sensor Open/Short Circuit 32 Oxygen (O2) Sensor Abnormal Sensor Signal 33 Vehicle Speed Sensor No Reference Signal 35 Purge Control Solenoid Valve Open/Short Circuit — определена неисправность

В обычных условиях кислород воздуха не способен соединиться с азотом воздуха. Воздух гореть не может – и мы это знаем…. . Но в условиях высоких температур и давлений, возникающих в камере сгорания, этот процесс происходит. Воздух горит! Чушь! – скажете вы, но возьмите любой учебник химии (ну хотя бы за 10-й класс церковно-приходской школы) и убедитесь, что данный процесс происходит при температуре порядка 1100 – 1200 градусов. Вполне реальная температура для камеры сгорания!

Как понизить температуру в камере сгорания? Именно для этого существует система EGR. Часть выхлопных газов направляется снова в камеру сгорания. Это сгоревшие газы – они не могут быть ни окислителем, ни топливом – это нейтральные вещества. Они просто занимают место в камере сгорания, не позволяя свежей смеси поступать в цилиндр. Количество новой смеси, поступающей в цилиндр уменьшается, – уменьшается количество выделяемого тепла – падает температура – окислы азота не появляются. Представьте себе, как будто вы положили кирпич в камеру сгорания. Толку от него мало – а место занимает!

Что произойдет, если мы этот клапан включим на холостом ходу? Большое разряжение, малая наполняем ость цилиндра.… А тут еще количество смеси уменьшим! Перебои в работе двигателя обеспечены! Вот почему на ХХ клапан EGR никогда не включается. А если он прогорит? Или будут дефекты по пневмоклапану, управляющим им? И на ХХ он включен. Запредельные СН и СО, топливная коррекция, крайне нестабильная работа двигателя!

Способы контроля за работой этой системы и методика ремонта – тема отдельной статьи…

Решено было проверить работу и исправность датчика кислорода. Если смотреть со стороны, то действия Алексея несведующему глазу будут непонятными: он открыл крышку воздушного фильтра и засунул туда ладонь…

И опять попросим прокомментировать эти действия Рязанова Федора

На сегодняшний день методики проверки расходометров, указанные в официальных мануалах и широко освещенные в литературе не обеспечивают необходимой точности. Все современные методики их проверки основаны на их контроле со стороны лямбда-зонда. Но мы должны быть уверены в правильности его показаний. Итак, как проверить лямбда-зонд?


Если Вы хотите знать больше, читайте продолжение, следите за нашими статьями. И можете звонить:
г. Москва, код 495 Технические вопросы (Диагностика и ремонт) — Алексей,- 7403028 Административные вопросы (повышение квалификации) — Леонид Борисович,- 9950319
Владимир Петрович

Для снижения токсичных выбросов в автомобиле предусмотрена сложная система очистки выхлопного газа. Чтобы каталитический нейтрализатор стабильно обеспечивал уровень выброса в соответствие с эко протоколами Евро 4, 5, 6, двигатель авто должен получать корректно обогащенную топливную смесь, которая сгорает в цилиндрах блока на 99 %. Правильно сформировать процентный показатель: воздух/топливо помогают лямбда зонды — датчики присутствия кислорода. Элементы системы мониторят состав отработанного газа и передают сигналы на блок управления ДВС.

Широкополосный лямбда зонд

С ужесточением протоколов по нормам выбросов производители начали массово устанавливать на свои авто последнюю разработку кислородного улавливателя — широкополосный лямбда зонд, узел замеряет процент кислорода в отработанном газе в расширенных контрольных границах.

Датчики кислорода — разновидности

Функция всех датчиков, независимо от конструктивных особенностей, проводить постоянный количественный замер кислорода в отработанном газе и сравнивать показатель с эталоном. На основании количества остаточного кислорода, ЭБУ делает вывод о качестве сгорания топлива в блоке цилиндров. Эталонный показатель топливной смести носит название стехиометрическая (абсолютная) ТВС. Технически обозначается как λ=1.

В ее составе должно присутствовать соотношение 14.7/1, где 14.7 — кислород, 1 — топливо. При таком соотношении происходит полное сгорание солярки или бензина, распад твердых частиц, и как следствие, минимальные токсические отходы в выхлопе. Когда в ТВС преобладает воздух, смесь считается обедненной, если преобладает топливо — обогащенной.

Широкополосные лямбда зонды

Автомобили, с системой экологических выбросов под протокол Евро 5, 6 оснащаются широкополосными датчиками, усовершенствованные конструкции позволяют отслеживать процентное соотношение кислород/топливо в системе выпускного тракта максимально точно. Кроме широкополостных лямбда зондов авто оснащаются:

  • зондами на основе циркония;
  • титановыми.

Эти три разновидности контроллеров не могут быть взаимозаменяемыми. Принцип работы циркониевого зонда основан на гальваническом законе, где твердый наконечник из диоксида циркония действует как электролит. Широкополосный датчик имеет две камеры и работает на основе закона модуляции напряжения.

Каждый кислородный зонд предназначен под конкретную марку авто. Датчик кислорода синхронизирован с блоком управления ДВС, переустановка конструкций не допускается.

Конструктивные параметры широкополостного лямбда зонда

Место установки датчика на патрубке выходного коллектора перед блоком каталитического нейтрализатора. Для более четкого контроля за составом выхлопного газа и работой катализатора, после блока нейтрализатора может устанавливается второй кислородник. Конструкция широкополостного элемента.

Конструкция широкополостного элемента

  1. Камера электролизного (ионного) насоса.
  2. Опорные электроды (платиновое покрытие).
  3. Нагревательная пластина.
  4. Эталонный проход.
  5. Керамический блок (ZrO2).
  6. Диффузионная щель.
  7. Измерительная (опорная) камера.
  8. Платиновые электроды измерительной камеры.
  9. Электроды ионной электролизной камеры (насоса).

Рабочий цикл широкополосного датчика

Рабочую зону широкополосного лямбда зонда принято условно делить на 4 части. Это удобно для понимания принципа работы узла, во время диагностики, когда на приборной панели выходит ошибка системы.

Рабочий цикл широкополосного датчика

  1. Камера ионого электролизного насоса — А.
  2. Чувствительный элемент или элемент Нернста — В.
  3. Электроцепь — С.
  4. ЭБУ — Д.

Отработанные газы, проходя по патрубку системы проникают в диффузионную щель, где происходит процесс дожигания. После дожига в камере образуется либо избыток, либо нехватка кислорода. Время каталитического сгорания твердых частиц в камере занимает 0.01 сек., но поскольку процесс дожига происходит только при высоком нагреве газа (от 200–300 градусов по Цельсию), камера нагревается через элемент нагревателя.

После догара топливного выхлопа в блоке, чувствительный элемент Нернста проводит сравнение, полученный состав воздуха с эталонным и передает информацию на ЭБУ мотора в одном из трех вариантов:

На основе показателей ЭБУ посылает импульс на ионный насосный блок. В зависимости от первичных данных блок управления передает одну из трех команд.

  1. При переизбытке кислорода формируется положительный ток, смесь обедненная, необходимо провести лишний кислород в выхлопной патрубок.
  2. Если смесь обогащенная, необходимо закачать кислород из коллектора выхлопной системы в камеру и сформировать отрицательный ток.
  3. При стехиометрии ЭБУ не дает сигнал.

Во время формирования положительного или отрицательного тока в блоке ионного насоса, формируется показатель качественного состава выхлопной смеси. ЭБУ считывает параметр тока на сторонах насоса и формирует сигналы на корректировку подачи топлива в систему впрыска.

После внедрения широкополостных датчиков в систему выходного коллектора значительно упростился процесс диагностики и отпала необходимость использовать газоанализаторы. Но не все так однозначно в работе современных датчиков.

внедрение широкополостного датчика

Нулевой показатель тока

  • критичный дефект;
  • неисправность зонда.

На практике водитель в одном случае из десяти увидит код ошибки, говорящей, что датчики не работает. ЭБУ не проверяет качество работы лямбда зонда, поскольку для мониторинга необходимо принудительно обогатить топливную смесь, затем критически увеличить поступление воздуха в цилиндры. Это способствует токсичному выхлопу. Поскольку вся система направлена на поддержку экологического стандарта отработанного газа, проверить рабочее состояние датчика можно только принудительно, вручную.

кислородный зонд

И в первом и во втором случае проводится демонтаж датчика, его проверка на работоспособность, вторым шагом идет проверка топливного состава. Если смесь подается в цилиндры блока неправильного состава, проводится корректировка качества смеси через настройку форсунок, зажигания, других элементов системы топливоподачи.

Признаки поломки

По своему техническому регламенту широкополостные кислородные зонды корректируют лямбду в настройке 0.7–1.6 λ. Признаки выхода из строя кислородника во многом схожи с поломками катализатора, поэтому перед диагностикой лямбда зонда проверяется сигнал от каталитического нейтрализатора. Характерные симптомы неисправности:

Перечисленные признаки могут свидетельствовать о нарушении в работе других узлов и агрегатов: разрушенном катализаторе, растянутом ремне ГРМ и прочем.

неисправный широкополосный лямбда зонд

Причины неисправности

Средний срок службы широкополостных датчиков 100–130 тыс. пробега. Значительно сократить работоспособность прибора могут следующие показатели:

  • некачественный бензин;
  • соляра с большим содержанием серы, присадок;
  • использование низкотемпературных герметиков при монтаже (покрытие разрушается, попадает в выпускной коллектор и блок датчика);
  • износ масляных колпачков, колец, масло проникает в систему выпускного коллектора;
  • некорректно выставленное зажигание, систематическое поступление в цилиндры обогащенной ТВС;
  • трещина в корпусе;
  • нарушение проводки, нестабильный контакт, обрыв цепи.

Каждая из причин влияет на срок службы кислородного датчика. При замене детали используют только оригинальные изделия, сверяясь по каталожным номерам. Производители настаивают — кислородные широкополостные датчики можно менять только на аналогичные с совпадающими каталожными номерами.

Как провести диагностику широкополостного лямбда зонда

Диагностика широкополосного датчика начинается с визуального осмотра наконечника элемента, проверки токопроводящих выводов. Это самый простой способ провести диагностику, осматривать датчики нужно каждые 10 000 пробега, вынимая детали с посадочного места на выходном коллекторе. Что проверяют.

  1. Надежность контакта клеммы с зондом.
  2. Наличие механических повреждений.
  3. Выкручивают элемент проверяют кожух.

На рабочем зонде могут быть незначительные отложения, которые легко счищаются (даже ногтем). На наконечнике не должно быть окисла. Зонд необходимо поменять, если после демонтажа на наконечнике замечают изменение покрытия.

Сажевые отложения возникают при систематически переобогащенной топливной смеси, если вышел из строя нагреватель зонда. Сажа засоряет внутренние блоки, снижает скорость реакции и точность передачи данных.

Серые, белые отложения свидетельствуют, что в моторном масле или топливе большое количество присадок. Отложения забивают проходы в камеру, снижают точность сигнала в 5 раз.

Свинец накапливается на наконечнике зонда и снижает чувствительность платиновых панелей. Возникает при использовании некачественного топлива (чаще на дизельных моторах).

Диагностика зонда мультиметром

Если визуально датчик не имеет следов неисправности, нет отложений, проверяется работоспособность цепи. В широкополостных датчиках Bosch, которые чаще других устанавливаются на авто присутствует шесть проводов подключения:

  • Красный — сигнальный плюс;
  • Желтый — опорный плюс;
  • Черный — опорный минус;
  • Белый — нагреватель минус;
  • Серый — нагреватель плюс;
  • Зеленый — сигнальный минус.

Для проверки работоспособности определенный провод будет подключаться на щуп мультиметра. Проверка целостности электроцепи узла делится на четыре этапа.

  1. Диагностика напряжения в нагревательном элементе.
  2. Напряжения в опорном блоке зонда (опорное напряжение).
  3. Сопротивление нагревательного элемента (проверка состояния).
  4. Сигнал.

Диагностика зонда мультиметром

Для проверки напряжения в нагревательном элементе, включают зажигание, зонд остается в разъеме. Щупы мультиметра присоединяются к проводам подогрева (белый, серый). Если цепь рабочая, цифры напряжения на экране тестера совпадут с напряжением бортовой сети — 12 В.

Напряжение в проводке опорного блока проверяется аналогично. Щупы устанавливаются на сигнальный провод и массу (желтый, черный), рабочая проводка выдаст на экран тестера показание 0.45 В.

мультиметр

Широкополостные конструкции зондов могут работать только после нагрева. Работоспособность нагревательной части датчика проверяют по сопротивлению элемента. Датчик снимают с разъема, проверяют сопротивление между контактами нагревателя. Для каждого зонда характерны индивидуальные параметры сопротивления, но в любом случае они находятся в границах 2–10 Ом.

Замена датчика

Проверка проводки зонда достаточно кропотливая работа, в большинстве случаев на СТО предлагают только поменять узел, если нарушена проводка, но учитывая, стоимость оригинального широкополостного датчика начинается с 10 000 руб. многие водители успешно находят неисправность в цепи и устраняют пробой.

широкополостный датчик

Переустановка зонда занимает 10–15 минут при выключенном и желательно остывшем моторе. Отключается АКБ, специальным ключом снимается затяжка датчика, деталь вынимается с выходного коллектора и отсоединяется от ЭБУ. Установка нового происходит аналогично, зонд вкручивается в посадочное место рукой, затягивается. При замене проверяется состояние седла, степень износа уплотнительных колец. При необходимости проводится замена.

Широкополосные кислородные лямбда зонды достаточно сложный прибор, которые синхронизирован с прошивкой электронного блока конкретного автомобиля. Если газоанализатор можно было легко переделать из старого датчика своими руками, то в случае с кислородниками проводить такие работы опасно. Исключение — большой опыт в программировании и достаточные знания по настройке данного типа оборудования.

Читайте также: