Цифровая схема регулировки мощности коллекторного двигателя с тахометром

Обновлено: 04.07.2024

Регулятор поставляется без шунта, и переменного резистора . Если вы хотите приобрести готовое (полностью собранное) устройство, заказывайте его как обычно при этом отметьте в комментариях к заказу, что вам требуется сборка (Сборка прибавит к стоимости дополнительно 200.00 руб.) , при этом обязательно укажите мощность вашего двигателя.

Регулятор скорости коллекторного двигателя с компенсацией нагрузки и защитой от перегрузки предназначен для изменения скорости вращения двигателя. При включении обеспечивая плавный старт при этом скорость вращения двигателя стабилизируется в независимости от нагрузки на валу двигателя (константная электроника).

Особенности: Особенностью данного устройства перед системами с таходатчиком, является то, что нет необходимости вмешиваться в конструкцию двигателя , нет необходимости даже разбирать инструмент. Устройство можно выполнить в виде промежуточного блока, включенного между электрической розеткой и двигателем. Update: для нормальной работы функции плавного старта - выключатель должен находится в цепи 220В.

Функции регулятора:

Внимание! Устройство, находится под высоким напряжением и не имеет гальванической развязки от питающей сети. Поэтому при работе с ним нужно соблюдать предельную осторожность. Все манипуляции с регулятором можно проводить только после выключения питания и полного отключения его от сети.

При использовании электродвигателя в инструментах, одной из серьёзных проблем является регулировка скорости их вращения. Если скорость недостаточно высока, то действие инструмента является недостаточно эффективным.

Коллекторный двигатель

Двигатель для электроинструментов и бытовой техники обычно относится к одному из 2 основных типов:

В прошлом, вторая из указанных категорий имела наибольшее распространение. Сейчас, примерно 85% двигателей, которые употребляются в электрических инструментах, бытовой или кухонной технике, относятся к коллекторному типу. Объясняется это тем, что они имеют большую степень компактности, они мощнее и процесс управления ими является более простым.

Эту закономерность можно использовать для работы коллекторного двигателя.

Важным моментом здесь является подключение тока к этой рамке. Поскольку она вращается, для этого используются специальные скользящие контакты. После того, как рамка повернётся на 180 градусов, ток по этим контактам потечёт в обратном направлении. Таким образом, направление вращения останется прежним. При этом, плавного вращения не получится. Для достижения такого эффекта принято использовать несколько десятков рамок.

Устройство

Устройство коллекторного двигателя

Коллекторный двигатель состоит обычно из ротора (якоря), статора, щёток и тахогенератора:

  1. Ротор — это вращающаяся часть, статор — это внешний магнит.
  2. Щётки, сделанные из графита – это основная часть скользящих контактов, через которую на вращающийся якорь подаётся напряжение.
  3. Тахогенератор – это прибор, который отслеживает характеристики вращения. В случае нарушения равномерности движения, он корректирует поступающее в двигатель напряжение, тем самым делая его более плавным.
  4. Статор может содержать не один магнит, а, например, 2 (2 пары полюсов). Также, вместо статических магнитов, здесь могут быть использованы и катушки электромагнитов. Работать такой мотор может как от постоянного, так и от переменного тока.

Простота регулировки скорости коллекторного двигателя определяется тем, что скорость вращения прямо зависит от величины поданного напряжения.

Кроме этого, важной особенностью является то, что ось вращения непосредственно можно присоединять к вращающемуся инструменты без использования промежуточных механизмов.

Если говорить об их классификации, то можно говорить о:

  1. Коллекторных двигателях постоянного тока.
  2. Коллекторных двигателях переменного тока.

В этом случае, речь идёт о том, каким именно током происходит питание электродвигателей.

Классификация может быть сделана также и по принципу возбуждения двигателя. В устройстве коллекторного двигателя, электрическое питание подаётся и на ротор и на статор двигателя (если в нём используются электромагниты).

Разница состоит в том, как организованы эти подключения.

Тут принято различать:

  • Параллельное возбуждение.
  • Последовательное возбуждение.
  • Параллельно-последовательное возбуждение.

Регулировка

Коллекторный двигатель

Теперь расскажем о том, как можно регулировать обороты коллекторных двигателей. В связи с тем, что скорость вращения мотора просто зависит от величины подаваемого напряжения, то любые средства регулировки, которые способны выполнять эту функцию для этого вполне пригодны.

Перечислим несколько такого рода вариантов для примера:

  1. Лабораторный автотрансформатор (ЛАТР).
  2. Заводские платы регулировки, используемые в бытовых приборах (можно использовать в частности те, которые применяются в миксерах или в пылесосах).
  3. Кнопки, используемые в конструкции электроинструментах.
  4. Бытовые регуляторы освещения с плавным действием.

Однако, все вышеперечисленные способы имеют очень важный изъян. Вместе с уменьшением оборотов, одновременно уменьшается и мощность работы мотора. В некоторых случаях, его можно остановить даже просто рукой. В некоторых случаях, это может быть приемлемо, но большей частью, это является серьёзным препятствием.

Хорошим вариантом является выполнение регулировки оборотов посредством использования тахогенератора. Его обычно устанавливают на заводе. При отклонениях в скорости вращения мотора, через симисторы в мотор передаётся уже откорректированное электропитание, соответствующее требуемой скорости вращения. Если в эту схему встроить регулировку вращения мотора, то потери мощности здесь происходить не будет.

Как это выглядит конструктивно? Наиболее распространены реостатная регулировка вращения, и сделанная на основе использования полупроводников.

В первом случае, речь идёт о переменном сопротивлении с механической регулировкой. Она последовательно подключается к коллекторному электродвигателю. Недостатком является дополнительное выделение тепла и дополнительная трата ресурса аккумулятора. При таком способе регулировк, происходит потеря мощности вращения мотора. Является дешёвым решением. Не применяется для достаточно мощных моторов по упомянутым причинам.

Во втором случае, при использовании полупроводников, происходит управление мотором путём подачи определённых импульсов. Схема может менять длительность таких импульсов, что в свою очередь, меняет скорость вращения без потери мощности.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Схема работы регулировки

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При изменении силы тока, эта частота может изменяться между 3 кГц и 5 кГц. Переменный резистор R2 служит для регулировки тока. При использовании электродвигателя в бытовых условиях, рекомендуется использовать регулятор стандартного типа.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

Печатная плата

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

Собранное устройство

Собранное устройство

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Критерии выбора и соимость

Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

  1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
  2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
  3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
  4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
  5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.

В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:



Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.
Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор. Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При изменении силы тока, эта частота может изменяться между 3 кГц и 5 кГц. Переменный резистор R2 служит для регулировки тока. При использовании электродвигателя в бытовых условиях, рекомендуется использовать регулятор стандартного типа.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:


На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева.

При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В

оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

В конструкции регулятора применена интегральная схема

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.


Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт. Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

ШИМ-регулятор оборотов электродвигателей коллекторного типа

Для регулировки частоты вращения маломощных электродвигателей коллекторного типа обычно применяют резистор, который включают последовательно с двигателем. Но такой способ включения обеспечивает очень низкий КПД, а самое главное не позволяет осуществлять плавную регулировку оборотов (найти переменный резистор достаточной мощности на несколько десятков Ом совсем не просто). А самый главный недостаток такого способа, это то, что иногда происходит остановка ротора при снижении напряжения питания.

ШИМ-регуляторы, речь о которых пойдет в этой статье, позволяют осуществлять плавную регулировку оборотов без перечисленных выше недостатков. Помимо этого ШИМ-регуляторы так же можно применять и для регулировки яркости ламп накаливания.

Схема ШИМ-регулятора

Схема ШИМ-регулятора

Схема ШИМ регуляторов на рис.2 аналогична предыдущей, но задающий генератор здесь выполнен на операционном усилителе (ОУ) DA1. Этот ОУ функционирует в роли генератора импульсов напряжения треугольной формы с частотой повторения 500 Гц. Переменный резистор R7 позволяет осуществлять плавную регулировку вращения.

Схема ШИМ-регулятора на таймере ne555

На рис.3. представлена весьма интересная схема регулятора. Этот ШИМ регулятор выполнен на интегральном таймере NE555. Задающий генератор имеет частоту повторения 500 Гц. Длительность импульсов, а, следовательно, и частоту вращения ротора электродвигателя можно регулировать в диапазоне от 2 до 98 % периода повторения. Выход генератора ШИМ регулятора на таймере NE555 подключен к усилителю тока, выполненному на транзисторе VT1 и собственно управляет электродвигателем М1.

Главным недостатком схем рассмотренных выше является отсутствие элементов стабилизации частоты вращения вала при изменении нагрузки. А вот следующая схема, показанная на рис.4., поможет решить эту проблему.

Схема ШИМ-регулятора со стабилизацией частоты вращения

Данный ШИМ регулятор как и большинство аналогичных устройств, имеет задающий генератор импульсов напряжения треугольной формы (частота повторения 2 кГц), выполненный на DA1.1.DA1.2, компаратор на DA1.3, электронный ключ на транзисторе VT1, а также регулятор скважности импульсов, а по сути частоты вращения электродвигателя — R6. Особенностью схемы является наличие положительной обратной связи посредством резисторов R12, R11, диода VD1,конденсатора C2, и DA1.4, которая обеспечивает постоянную частоты вращения вала электродвигателя при изменении нагрузки. При подключении ШИМ регулятора к конкретному электродвигателю при помощи резистора R12 производится регулировка глубины ПОС, при которой не возникает автоколебаний частоты вращения при увеличении или уменьшении нагрузки на вал двигателя.

Элементная база. В приведенных в статье схемах можно использовать следующие аналоги деталей: транзистор КТ117А можно заменить на КТ117Б-Г или как вариант на 2N2646; КТ817Б — КТ815, КТ805; микросхему К140УД7 на К140УД6, или КР544УД1, ТL071, TL081; таймер NE555 на С555, или КР1006ВИ1; микросхему TL074 на TL064, или TL084, LM324. Если необходимо подключить к ШИМ-регулятору более мощную нагрузку ключевой транзистор КТ817 необходимо заменить более мощным полевым транзистором, как вариант, IRF3905 или подобным. Указанный транзистор способен пропускать токи до 50А.
Подготовлено по материалам статьи: А.В. Тимошенко, Радіоаматор №4, 2008г.
Оцените статью Рейтинг 3.67 (21 Голос)

Пытаюсь сделать регулятор оборотов вращения коллекторных двигателей. Однако, в статье нет файла печатной платы.
Сама схема довольно распространена в сети, но к схеме, найденной на другом ресурсе, приложена разводка платы с использованием сборного диодного моста, а в хозяйстве имеется только диодный мост КЦ405.

Попробовал нарисовать плату по схеме из первой статьи.

Изображение

Вот что получилось.

Файл в формате Sprint-Layout 6.

Сильно не пинайте, практически это моя первая разводка платы. Ну и что касается компонентов, читал, что все можно сделать гораздо проще на микросхеме или таймере, но, поскольку я практически только учусь, хочу сперва выучить таблицу умножения, а уж потом браться за калькулятор . Да и делацца будет из имеющегося в наличии.

Посмотрите, пожалуйста, все ли сделал правильно, и не напутал ли чего с эмитерами, базами, управляющими электродами, катодами и прочими анодами .

Катод и анод у обоих тиристоров перепутаны - во всяком случае, буквы. Ноги КТ117 тоже перепутаны. Вообще, непонятно, это откуда вид: снизу на монтаж или сверху на компоненты? Платы полагается разводить, глядя на них со стороны размещения компонентов, сверху. Даже односторонние.

JLCPCB, всего $2 за прототип печатной платы! Цвет - любой!

КЦ405 драматически уступает в мощности диодам КД202, регулировать можно что нибудь не мощнее кофемолки.
На страничке по ссылке есть более простой и заметно более мощный регулятор.

(См. регулятор оборотов болгарки).

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

mickbell, так и есть, со стороны размещения компонентов, сверху. Поменять подключение (буквы) местами?

serg, читал, что симисторы нельзя использовать в регуляторе для индуктивной нагрузки. К тому же, подключал моторчик к имеющемуся регулятору, практически идентичному предложенному вами для болгарки, не работает моторчик с таким регулятором. Поэтому остановился на варианте без семистора.

В статье приведены советы и рекомендации по проектированию печатных плат преобразователей на основе карбид-кремниевых транзисторов, позволяющие избежать наиболее распространенных ошибок и уменьшить вероятность отказа оборудования как в процессе разработки, так и во время его практической эксплуатации.

mickbell, так и есть, со стороны размещения компонентов, сверху. Поменять подключение (буквы) местами?

Посмотрите внимательно даташиты, мне пока некогда этим заниматься, дел привалило. Место я показал, на что обратить внимание, ну и, как тут подсказали (а я уже забыл, ибо давно с ними дел не имел, лет тридцать уже) КЦ405 - дохленький мост, надо что-то другое под такой мощный тиристор.

Приглашаем 27/01/2022 всех желающих посетить вебинар, посвященный двум наиболее растущим сегментам интегрированных источников питания – AC/DC малой мощности (1-20Вт) и сегменту решений PoL без изоляции. На вебинаре рассмотрим проблему выбора AC/DC в бюджетном сегменте и концепцию тестирования ускоренного старения, проведем сравнительный анализ подходов к интеграции AC/DC модулей. Сделаем обзор решений концепции POL с доисторических времен до современных технологий и средств для разработки и тестирования.

KBL406G ощутимо лучше.
Симисторы широко и повсеместно используются в регуляторах коллекторных электродвигателей.
Например буквально в каждом пылесосе.

Плата пылесоса Samsung

Схема.
Подобные регуляторы стоят в электро лобзиках, УШМ и прочем инструменте.

Схема практически та же.
Разберите старый пылесос и получите готовое устройство с нагрузкой до 2kW.


-serg-, вы правы. Проблема была в неправильном подключении электродвигателя к сети. При первом пробном запуске подключил обмотки по схеме для асинхронного двигателя с рабочим конденсаторов.

Двигатель запустился, что меня и интересовало. Но в дальнейшем при более продолжительном подключении, независимо от того, непосредственно к сети или через симисторный регулятор, моторчик искрил, нагревался и пытался дымить, как паровоз.
Присмотревшись к проводкам, в который раз убедился, что не все йогурты одинаково полезны .
Подключил обмотки последовательно.

Как бы работает. Не греется, соотвественно, не дымит. Запускается и регулируется простеньким симисторным регулятором мощности, который по жизни друг паяльника .

Но вопрос по регулятору на тиристорах остается.

Так и есть, исправил.

Изображение

В остальном все правильно?

И еще вопрос. Можно заменить в данной схеме обычные резисторы на резисторы SMD соотвествующего номинала? В купе с KBL406G это позволило бы значительно уменьшить плату.

Гугл помог найти только это. Вот сомнения и одолевают, в частности, относительно R7 24к 2Вт.

Большое спасибо всем откликнувшимся.

Последний раз редактировалось Doctor Old Ср ноя 23, 2016 19:47:44, всего редактировалось 1 раз.

Больше ничего я не нашёл ещё тогда, иначе сразу бы указал. Выводные менять на SMD можно, если их ограничения не хуже условий, в которых им предстоит работать. У резисторов в SMD-виде, к примеру, может быть меньше допустимое напряжение на выводах, чем у трухольных, следите за этим. Если не проходит, то можно поставить два-три меньшего номинала, соединённые последовательно.

mickbell, спасибо, вопрос про SMD получился больше теоретический, менять резисторы на поверхностные, в данном случае, больше мороки, чем пользы. Проще оставить, как есть.

Если двигатель коллекторный, то могут возникнуть проблемы. Щетки искрят? Искрят. Значит, ток через них прерывается, хоть и на очень короткие промежутки времени. А если прерывается, то тиристор тупо закроется, т.к. ток удержания при этом падает до нуля. В результате - нестабильная работа.

Спаял на такой печатке:

Плата.

На входе переменное напряжение 230В.

- на выходе диодного моста - 202В
- после резистора R7 24к - 29В
- между выводами резистора R7 24К - 176В
- на контактах потенциометра R1 5К - 3-4В
- на выходе - 26В, может быть и 18В, в зависимости от напряжения электросети сети.

При повороте ручки потенциометра напряжение на его контактах меняется от 0 до 3-4В, в зависимости от напряжения электросети сети. С диапазоном как бы понятно, наверное, нужен потенциометр не 5К, а 50К.

Читайте также: